-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathTDFMain_pytorch.py
360 lines (292 loc) · 14.1 KB
/
TDFMain_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import numpy as np
import matplotlib.pyplot as plt
import math
import sys
def compute_persistence_2DImg_1DHom_lh(f, padwidth = 2, homo_dim=1, pers_thd=0.001):
"""
compute persistence diagram in a 2D function (can be N-dim) and critical pts
only generate 1D homology dots and critical points
"""
assert len(f.shape) == 2 # f has to be 2D function
dim = 2
# pad the function with a few pixels of minimum values
# this way one can compute the 1D topology as loops
# remember to transform back to the original coordinates when finished
#padwidth = 2
# padvalue = min(f.min(), 0.0)
padvalue = f.min()
# print (type(f.cpu().detach().numpy()))
# print (padvalue)
if(not isinstance(f, np.ndarray)):
f_padded = np.pad(f.cpu().detach().numpy(),padwidth, 'constant', constant_values=padvalue.cpu().detach().numpy())
else:
f_padded = np.pad(f,padwidth, 'constant', constant_values=padvalue)
# call persistence code to compute diagrams
# loads PersistencePython.so (compiled from C++); should be in current dir
#from src.PersistencePython import cubePers
from PersistencePython import cubePers
# persistence_result = cubePers(a, list(f_padded.shape), 0.001)
persistence_result = cubePers(np.reshape(
f_padded, f_padded.size).tolist(), list(f_padded.shape), pers_thd)
# print("persistence_result", type(persistence_result))
# print(type(persistence_result))
# print (persistence_result)
# print(len(persistence_result))
# only take 1-dim topology, first column of persistence_result is dimension
persistence_result_filtered = np.array(list(filter(lambda x: x[0] == homo_dim,
persistence_result)))
# persistence diagram (second and third columns are coordinates)
# print (persistence_result_filtered)
if(persistence_result_filtered.shape[0]==0):
return np.array([]), np.array([]), np.array([])
dgm = persistence_result_filtered[:, 1:3]
# critical points
birth_cp_list = persistence_result_filtered[:, 4:4 + dim]
death_cp_list = persistence_result_filtered[:, 4 + dim:]
# when mapping back, shift critical points back to the original coordinates
birth_cp_list = birth_cp_list - padwidth
death_cp_list = death_cp_list - padwidth
return dgm, birth_cp_list, death_cp_list
def compute_persistence_2DImg_1DHom_gt(f, padwidth = 2, homo_dim=1, pers_thd=0.001):
"""
compute persistence diagram in a 2D function (can be N-dim) and critical pts
only generate 1D homology dots and critical points
"""
# print (len(f.shape))
assert len(f.shape) == 2 # f has to be 2D function
dim = 2
# pad the function with a few pixels of minimum values
# this way one can compute the 1D topology as loops
# remember to transform back to the original coordinates when finished
#padwidth = 2
# padvalue = min(f.min(), 0.0)
padvalue = f.min()
# print(f)
# print (type(f.cpu().numpy()))
if(not isinstance(f, np.ndarray)):
f_padded = np.pad(f.cpu().detach().numpy(),padwidth, 'constant', constant_values=padvalue.cpu().detach().numpy())
else:
f_padded = np.pad(f,padwidth, 'constant', constant_values=padvalue)
# call persistence code to compute diagrams
# loads PersistencePython.so (compiled from C++); should be in current dir
#from src.PersistencePython import cubePers
from PersistencePython import cubePers
# persistence_result = cubePers(a, list(f_padded.shape), 0.001)
persistence_result = cubePers(np.reshape(
f_padded, f_padded.size).tolist(), list(f_padded.shape), pers_thd)
# print("persistence_result", type(persistence_result))
# print(type(persistence_result))
# print (persistence_result)
# print(len(persistence_result))
# only take 1-dim topology, first column of persistence_result is dimension
persistence_result_filtered = np.array(list(filter(lambda x: x[0] == homo_dim,
persistence_result)))
# persistence diagram (second and third columns are coordinates)
# print (persistence_result_filtered)
#print ('shape of persistence_result_filtered')
#print (persistence_result_filtered.shape)
if(persistence_result_filtered.shape[0]==0):
return np.array([]), np.array([]), np.array([])
dgm = persistence_result_filtered[:, 1:3]
# critical points
birth_cp_list = persistence_result_filtered[:, 4:4 + dim]
death_cp_list = persistence_result_filtered[:, 4 + dim:]
# when mapping back, shift critical points back to the original coordinates
birth_cp_list = birth_cp_list - padwidth
death_cp_list = death_cp_list - padwidth
return dgm, birth_cp_list, death_cp_list
def compute_dgm_force(lh_dgm, gt_dgm, pers_thresh=0.03, pers_thresh_perfect=0.99, do_return_perfect=False):
# get persistence list from both diagrams
lh_pers = abs(lh_dgm[:, 1] - lh_dgm[:, 0])
if(gt_dgm.shape[0] == 0):
gt_pers = None;
gt_n_holes = 0;
else:
gt_pers = gt_dgm[:, 1] - gt_dgm[:, 0]
gt_n_holes = gt_pers.size # number of holes in gt
#gt_n_holes = (gt_pers > 0.03).sum() # number of holes in gt # ignore flat ones
if(gt_pers is None or gt_n_holes == 0):
idx_holes_to_fix = list();
idx_holes_to_remove = list(set(range(lh_pers.size)))
idx_holes_perfect = list();
else:
# more lh dots than gt dots
#print (lh_pers.shape)
#print(lh_pers.size)
#print (gt_pers.shape)
#assert lh_pers.size > gt_pers.size #?????????????????????????????????
#assert lh_pers.size >= gt_n_holes #?????????????????????????????????
if(lh_pers.size < gt_n_holes):
gt_n_holes = lh_pers.size
# check to ensure that all gt dots have persistence 1
tmp = gt_pers > pers_thresh_perfect
#assert tmp.sum() == gt_pers.size
# get "perfect holes" - holes which do not need to be fixed, i.e., find top
# lh_n_holes_perfect indices
# check to ensure that at least one dot has persistence 1; it is the hole
# formed by the padded boundary
# if no hole is ~1 (ie >.999) then just take all holes with max values
tmp = lh_pers > pers_thresh_perfect # old: assert tmp.sum() >= 1
print('pers_thresh_perfect',pers_thresh_perfect)
print('lh_pers > pers_thresh_perfect',(lh_pers > pers_thresh_perfect).sum())
#print (type(tmp))
lh_pers_sorted_indices = np.argsort(lh_pers)[::-1]
if np.sum(tmp) >= 1:
# if tmp.sum >= 1:
# n_holes_to_fix = gt_n_holes - lh_n_holes_perfect
lh_n_holes_perfect = tmp.sum()
#idx_holes_perfect = np.argpartition(lh_pers, -lh_n_holes_perfect)[
# -lh_n_holes_perfect:]
idx_holes_perfect = lh_pers_sorted_indices[:lh_n_holes_perfect];
else:
#idx_holes_perfect = np.where(lh_pers == lh_pers.max())[0]
idx_holes_perfect = list();
# find top gt_n_holes indices
#idx_holes_to_fix_or_perfect = np.argpartition(lh_pers, -gt_n_holes)[
# -gt_n_holes:]
idx_holes_to_fix_or_perfect = lh_pers_sorted_indices[:gt_n_holes];
# the difference is holes to be fixed to perfect
idx_holes_to_fix = list(
set(idx_holes_to_fix_or_perfect) - set(idx_holes_perfect))
# remaining holes are all to be removed
#idx_holes_to_remove = list(
# set(range(lh_pers.size)) - set(idx_holes_to_fix_or_perfect))
idx_holes_to_remove = lh_pers_sorted_indices[gt_n_holes:];
# only select the ones whose persistence is large enough
# set a threshold to remove meaningless persistence dots
# TODO values below this are small dents so dont fix them; tune this value?
pers_thd = pers_thresh
idx_valid = np.where(lh_pers > pers_thd)[0]
idx_holes_to_remove = list(
set(idx_holes_to_remove).intersection(set(idx_valid)))
force_list = np.zeros(lh_dgm.shape)
# push each hole-to-fix to (0,1)
force_list[idx_holes_to_fix, 0] = 0 - lh_dgm[idx_holes_to_fix, 0]
force_list[idx_holes_to_fix, 1] = 1 - lh_dgm[idx_holes_to_fix, 1]
# push each hole-to-remove to (0,1)
force_list[idx_holes_to_remove, 0] = lh_pers[idx_holes_to_remove] / \
math.sqrt(2.0)
force_list[idx_holes_to_remove, 1] = -lh_pers[idx_holes_to_remove] / \
math.sqrt(2.0)
if(do_return_perfect):
return force_list, idx_holes_to_fix, idx_holes_to_remove, idx_holes_perfect
return force_list, idx_holes_to_fix, idx_holes_to_remove
def compute_topological_loss(lh_dgm, gt_dgm):
"""
compute persistence loss
"""
force_list, idx_holes_to_fix, idx_holes_to_remove = \
compute_dgm_force(lh_dgm, gt_dgm)
loss = 0.0
for idx in idx_holes_to_fix:
loss = loss + force_list[idx, 0] ** 2 + force_list[idx, 1] ** 2
for idx in idx_holes_to_remove:
loss = loss + force_list[idx, 0] ** 2 + force_list[idx, 1] ** 2
return loss
def compute_topological_grad(lh_dgm, lh_bcp, lh_dcp, gt_dgm):
"""
compute topological gradient
"""
force_list, idx_holes_to_fix, idx_holes_to_remove = \
compute_dgm_force(lh_dgm, gt_dgm)
# each birth/death crit pt of a persistence dot to move corresponds to a row
# each row has 3 values: x, y coordinates, and the force (increase/decrease)
topo_grad = np.zeros(
[2 * (len(idx_holes_to_fix) + len(idx_holes_to_remove)), 3])
counter = 0
for idx in idx_holes_to_fix:
topo_grad[counter] = [lh_bcp[idx, 1], lh_bcp[idx, 0], force_list[idx, 0]]
counter = counter + 1
topo_grad[counter] = [lh_dcp[idx, 1], lh_dcp[idx, 0], force_list[idx, 1]]
counter = counter + 1
for idx in idx_holes_to_remove:
topo_grad[counter] = [lh_bcp[idx, 1], lh_bcp[idx, 0], force_list[idx, 0]]
counter = counter + 1
topo_grad[counter] = [lh_dcp[idx, 1], lh_dcp[idx, 0], force_list[idx, 1]]
counter = counter + 1
topo_grad[:, 2] = topo_grad[:, 2] * -2
return topo_grad
def save_pers_dgms(fig_fname, lh_dgm, lh_dname, gt_dgm, gt_dname):
"""
draw both diagrams, with respect names, save the figure to fig_fname
"""
plt.figure('Diagrams')
plt.clf()
plt.plot([0, 1], [0, 1], 'k-')
force_list, idx_holes_to_fix, idx_holes_to_remove = \
compute_dgm_force(lh_dgm, gt_dgm)
plt.scatter([lh_dgm[:, 0]], [lh_dgm[:, 1]], color='green', label=lh_dname)
for idx in idx_holes_to_fix:
plt.arrow(lh_dgm[idx, 0], lh_dgm[idx, 1], force_list[idx, 0],
force_list[idx, 1], head_width=0.02, head_length=0.03,
color='r')
for idx in idx_holes_to_remove:
plt.arrow(lh_dgm[idx, 0], lh_dgm[idx, 1], force_list[idx, 0],
force_list[idx, 1], head_width=0.02, head_length=0.03,
color='c')
# add small noise to gt persistent dots, so they don't overlap too much
gt_dgm = gt_dgm + 0.05 * (np.random.random_sample(gt_dgm.shape) - 0.5)
plt.scatter([gt_dgm[:, 0]], [gt_dgm[:, 1]], color='blue',
label=gt_dname + ' jittered')
plt.ylabel('Death Time')
plt.xlabel('Birth Time')
plt.title('Persistence Diagrams')
plt.axis('equal')
plt.legend()
plt.savefig(fig_fname)
def draw_critical_pts(fig_fname, lh_img, lh_dgm, lh_bcp, lh_dcp, gt_dgm):
"""
draw critical points that needs to be pushed up/down
"""
plt.figure('Critical Pts to Fix/Remove')
plt.clf()
plt.imshow(lh_img, 'gray')
force_list, idx_holes_to_fix, idx_holes_to_remove = \
compute_dgm_force(lh_dgm, gt_dgm)
for idx in idx_holes_to_fix:
plt.scatter(lh_bcp[idx, 1], lh_bcp[idx, 0], marker='v', color='r',
label='birth, fix, ' + str(force_list[idx, 0]))
plt.scatter(lh_dcp[idx, 1], lh_dcp[idx, 0], marker='o', color='r',
label='death, fix, ' + str(force_list[idx, 1]))
for idx in idx_holes_to_remove:
plt.scatter(lh_bcp[idx, 1], lh_bcp[idx, 0], marker='v', color='c',
label='birth, remove, ' + str(force_list[idx, 0]))
plt.scatter(lh_dcp[idx, 1], lh_dcp[idx, 0], marker='o', color='c',
label='death, remove, ' + str(force_list[idx, 1]))
plt.title('Persistence Pts to Fix/Remove')
plt.axis('equal')
# plt.legend(loc=5,bbox_to_anchor=(2, 0.5))
plt.legend(bbox_to_anchor=(1.1, 0.7), loc=5, borderaxespad=0.)
plt.tight_layout()
plt.savefig(fig_fname)
if __name__ == "__main__":
## example usage
# load lh, gt from likelihood.npy
result_folder = 'Results/'
likelihood_fname = 'Data/predicted_1.npy'
tmpX = np.load(likelihood_fname)
#likelihood = tmpX[1, :, :, 1] # take one slice
likelihood = tmpX
likelihood = likelihood[105:160, 105:160] # crop a piece
groundtruth = likelihood > 0.9 # approx gt using likelihood
# save the loaded (and modified) lh, gt
np.save(result_folder + 'likelihood_cropped.npy', likelihood)
plt.imsave(result_folder + 'likelihood_cropped.png', likelihood, cmap='gray')
np.save(result_folder + 'groundtruth_cropped.npy', groundtruth)
plt.imsave(result_folder + 'groundtruth_cropped.png', groundtruth,
cmap='gray')
# compute persistence
pd_lh, bcp_lh, dcp_lh = compute_persistence_2DImg_1DHom(likelihood)
pd_gt, bcp_gt, dcp_gt = compute_persistence_2DImg_1DHom(groundtruth)
# draw the persistence diagrams of both
dgm_fig_fname = result_folder + 'PersDgms.png'
save_pers_dgms(dgm_fig_fname, pd_lh, 'Likelihood', pd_gt, 'Ground Truth')
# draw critical pts
cpts_fig_fname = result_folder + 'PersCpts.png'
draw_critical_pts(cpts_fig_fname, likelihood, pd_lh, bcp_lh, dcp_lh, pd_gt)
# compute loss (scalar) and gradient of loss (forces at x,y locations in the
# image which corresp. to crit pts from the persistence computation)
topo_loss = compute_topological_loss(pd_lh, pd_gt)
topo_grad = compute_topological_grad(pd_lh, bcp_lh, dcp_lh, pd_gt)
print ('loss = ', topo_loss)
print ('grad = ', topo_grad)