-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcalculus.tex
267 lines (262 loc) · 17.6 KB
/
calculus.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
\documentclass[10pt,a4paper]{article}
\usepackage{shevonNotebook}
\begin{document}
\numberwithin{equation}{subsection}
\allowdisplaybreaks%强制自动换行
\maketitle
\thispagestyle{empty}
\newpage
\tableofcontents
\thispagestyle{empty}
\newpage
\setcounter{page}{1}
\section{常用三角函数公式}
\subsection{积化和差公式}
\begin{align}
\sin \alpha \cos \beta & =\frac{1}{2}[\sin (\alpha+\beta)+\sin(\alpha-\beta)] \\[7pt]
\cos \alpha \sin \beta & =\frac{1}{2}[\sin (\alpha+\beta)-\sin(\alpha-\beta)] \\[7pt]
\cos \alpha \cos \beta & =\frac{1}{2}[\cos (\alpha+\beta)+\cos(\alpha-\beta)] \\[7pt]
\sin \alpha \sin \beta & =-\frac{1}{2}[\cos (\alpha+\beta)-\cos(\alpha-\beta)]
\end{align}
\subsection{和差化积公式}
\begin{align}
\sin\alpha+\sin\beta & =2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\[7pt]
\sin\alpha-\sin\beta & =2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\[7pt]
\cos\alpha+\cos\beta & =2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\[7pt]
\cos\alpha-\cos\beta & =-2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\[7pt]
\tan\alpha+\tan\beta & =\frac{\sin (\alpha+\beta)}{\cos\alpha\cdot\cos \beta}
\end{align}
\subsection{归一化公式}
\begin{align}\label{gyhgs}
\sin^2 x+\cos^2x & =1 \\[7pt]
\sec^2 x-\tan^2x & =1 \\[7pt]
\cosh^2x-\sinh^2x & =1
\end{align}
\subsection{倍(半)角公式 \quad 降(升)幂公式}
\begin{align}
\sin^2x & =\frac{1}{2}(1-\cos 2x) \\[7pt]
\cos^2x & =\frac{1}{2}(1+\cos 2x) \\[7pt]
\tan^2x & =\frac{1-\cos 2x}{1+\cos 2x} \\[7pt]
\sin x & =2\sin\frac{x}{2}\cos\frac{x}{2} \\[7pt]
\cos x & =2\cos^2\frac{x}{2}-1=1-2\sin^2\frac{x}{2}=\cos^2\frac{x}{2}-\sin^2\frac{x}{2} \\[7pt]
\tan x & =\frac{2\tan(x/2)}{1-\tan^2(x/2)}
\end{align}
\subsection{万能公式}
令$ u=\tan\dfrac{x}{2} $则
\begin{align}
\sin x=\frac{2u}{1+u^2} \\[7pt]
\cos x=\frac{1-u^2}{1+u^2}
\end{align}
\section{常用的佩亚诺型余项泰勒公式}
\mybox[53a9ab]{\leftline{\textbf{泰勒公式\small{ $ (\xi\ \mbox{在}x_0\ \mbox{与}x\ \mbox{之间}) $}:}}\vspace{-2em}
\begin{align}
f(x)= & f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+o[(x-x_0)^n]\notag \\[7pt]
f(x)= & f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}\notag
\end{align}}
\leftline\small{由此可得常用的泰勒公式}
\begin{align}
\mathrm{e}^{x} & =1+x+\frac{1}{2}x^{2}+\frac{1}{6}x^{3}+\cdots+\frac{1}{n!}x^{n}+o(x^{n}) \\[7pt]
\ln(x+1) & =x-\frac{1}{2}x^2+\frac{1}{3}x^3-\cdots+(-1)^{n-1}\frac{1}{n}x^{n}+o(x^{n})
\end{align}
令 $n=2m$ 有,
\begin{align}
\sin x & =x-\frac{1}{6}x^{3}+\frac{1}{120}x^{5}+\cdots+(-1)^{m-1}\frac{1}{(2m-1)!}x^{2m-1}+o(x^{2m}) \\[7pt]
\cos x & =1-\frac{1}{2}x^2+\frac{1}{24}x^4-\cdots+(-1)^m \frac{1}{(2m)!}x^{2m}+o(x^{2m+1}) \\[7pt]
\tan x & =x+\frac{1}{3}x^3+\frac{2}{15}x^5+\frac{17}{315}x^7+\cdots+o(x^{2m-1})
\end{align}
\small\mbox{此处考虑到tan的泰勒公式其通项公式会出现伯努利数故此处略去其通项 }
\begin{align}
\arcsin x & =x+\frac{1}{6}x^3+\frac{3}{40}x^{5}+\cdots+o(x^{2m})
\end{align}
常用于近似计算的泰勒公式
\begin{align}
\frac{1}{1-x} & =1+x+x^2+x^3+\cdots+x^n+o(x^n) \\[7pt]
(1+x)^{\alpha} & =\sum_{i=0}^{n}\frac{\prod_{j=0}^{i-1}{(\alpha-j})}{i!}x^n+o(x^n)\notag \\[7pt]
& =1+\alpha x+\frac{\alpha(\alpha-1)}{2}x^2+\cdots+o(x^n) \\[7pt]
\alpha^x & =\sum_{i=0}^{n}\frac{\ln^n \alpha}{n!}x^n+o(x^n)\notag \\[7pt]
& =1+x\ln \alpha+\frac{\ln^2 \alpha}{2}x^2+\cdots+\frac{\ln^n \alpha}{n!}x^n+o(x^n)
\end{align}
\section{基本求导公式}
\begin{multicols}{2}
\begin{equation}
\left( C\right)'=0
\end{equation}
\begin{equation}
\left( x^{\mu}\right)'=\mu x^{\mu-1}
\end{equation}
\begin{equation}
\left( \sin x\right)'=\cos x
\end{equation}
\begin{equation}
\left( \cos x\right)'=-\sin x
\end{equation}
\begin{equation}
\left( \tan x\right)'=\sec^2 x
\end{equation}
\begin{equation}
\left( \cot x\right)'=-\csc^2 x
\end{equation}
\begin{equation}
\left( \sec x\right)'=\sec x\cdot\tan x
\end{equation}
\begin{equation}
\left( \csc x\right)'=-\csc x\cdot\tan x
\end{equation}
\begin{equation}
\left( a^x\right)'=a^x\ln a\ (a>0,a\neq1)
\end{equation}
\begin{equation}
\left( \log_{a}x\right)'=\frac{1}{x\cdot\ln a}\ (a>0,a\neq1)
\end{equation}
\begin{equation}
\left( \arcsin x\right)'=\frac{1}{\sqrt{1-x^2}}
\end{equation}
\begin{equation}
\left( \arccos x\right)'=-\frac{1}{\sqrt{1-x^2}}
\end{equation}
\begin{equation}
\left( \arctan x\right)'=\frac{1}{1+x^2}
\end{equation}
\begin{equation}
\left( \mathrm{arccot}\, x\right)'=-\frac{1}{1+x^2}
\end{equation}
\end{multicols}
\section{函数图形描述中涉及到的重要公式}
\subsection{常用曲率计算公式}
\mybox[53a9ab]{
曲率的定义式$ K=\displaystyle\left|\frac{\mathrm{d}\alpha}{\mathrm{d}s}\right| $}
由定义式我们可以推得
\begin{enumerate}
\item \textbf{直角坐标}系中的曲线\ $y=y(x)$\ 有曲率表达式
\begin{equation}
K=\frac{\left|y''\right|}{\left( 1+y^{'2} \right)^{3/2}}\mbox{;}
\end{equation}
\item \textbf{参数方程}表示的曲线\ $x=\varphi(t),y=\psi(t) $\ 有曲率表达式
\begin{equation}
K=\frac{\left|\varphi'(t)\psi''(t)-\varphi''(t)\psi'(t)\right|}{\left[ \varphi^{'2}(t) +\psi^{'2}(t) \right]^{3/2}}\mbox{;}
\end{equation}
\item \textbf{极坐标}表示的的曲线\ $y=y(x)$\ 有曲率表达式
\begin{equation}
K=\frac{\left|r^2+2r^{'2}-r\cdot r''\right|}{\left(r^2+r^{'2}\right)^{3/2}}\mbox{;}
\end{equation}
\item 曲线在对应点\ $M(x,y)$\ 的曲率中心\ $D(\alpha,\beta)$\ 的坐标为
\begin{equation}
\begin{cases}
\alpha=x-\displaystyle\frac{y'(1+y^{'2})^3}{y^{''2}} \\[7pt]
\beta=y+\displaystyle\frac{1+y^{'2}}{y''}
\end{cases}
\end{equation}
.
\end{enumerate}
\subsection{曲线的渐近线}
\begin{enumerate}
\item 若\ $\lim\limits_{ x\rightarrow \infty }f(x)=b$\ ,则称\ $y=b$\ 为曲线\ $f(x)$\ 的\textbf{水平渐近线}
\item 若\ $\lim\limits_{ x\rightarrow x_0 }f(x)=\infty$\ ,则称\ $x=x_0$\ 为曲线\ $f(x)$\ 的\textbf{垂直渐近线}
\item 若\ $\lim\limits_{ x\rightarrow \infty }[f(x)-(ax+b)]=0$\ ,其中
$
\begin{cases}
a=\displaystyle \lim\limits_{x\to \infty}\frac{f(x)}{x} \\[7pt]
b=\displaystyle \lim\limits_{x\to \infty}[f(x)-ax]
\end{cases}
$
则称\ $y=ax+b$\ 为曲线\ $f(x)$\ 的\textbf{斜渐近线}
\end{enumerate}
\section{基本积分公式}
\begin{align}
& \int k \,\mathrm{d}x=kx+C \ \mbox{(其中}k\mbox{为常数)} \\[7pt]
& \int x^\mu\,\mathrm{d}x=\frac{x^{\mu+1}}{\mu+1}+C\ (\mu\neq-1) \\[7pt]
& \int \frac{1}{x}\,\mathrm{d}x=\ln|x|+C \\[7pt]
& \int\frac{\mathrm{d}x}{1+x^2}=\arctan x+C \\[7pt]
& \int\frac{\mathrm{d}x}{\sqrt{1-x^2}}=\arcsin x+C_1=-\arccos x+C_2 \\[7pt]
& \int \sin x\,\mathrm{d}x=-\cos x+C \\[7pt]
& \int\cos x \,\mathrm{d}x=\sin x +C \\[7pt]
& \int\tan x\,\mathrm{d}x=-\ln |\cos x|+C \\[7pt]
& \int\cot x\,\mathrm{d}x=\ln |\sin x|+C \\[7pt]
& \int\csc x\,\mathrm{d}x=\int\frac{1}{\sin{x}}\,\mathrm{d}x=\frac{1}{2}
\ln{\left|\frac{1-\cos{x}}{1+\cos{x}}\right|}+C=\ln{\left|\tan{\frac{x}{2}}\right|}+C=\ln{\left|\csc{x}-\cot{x}\right|}+C \\[7pt]
& \int\sec x\,\mathrm{d}x=\int\frac{1}{\cos{x}}\,\mathrm{d}x=\frac{1}{2}
\ln{\left|\frac{1+\sin{x}}{1-\sin{x}}\right|}+C=\ln{\left|\sec{x}+\tan{x}\right|}+C \\[7pt]
& \int\sec^2 x\,\mathrm{d}x=\tan x +C \\[7pt]
& \int \csc^2 x\,\mathrm{d}x=-\cot x +C \\[7pt]
& \int \sec x\cdot\tan x \,\mathrm{d}x=\sec x+C \\[7pt]
& \int\csc x \cdot\cot x \,\mathrm{d}x=-\csc x+C \\[7pt]
& \int \mathrm{e}^x \,\mathrm{d}x=\mathrm{e}^x+C \\[7pt]
& \int a^x\,\mathrm{d}x=\frac{a^x}{\ln a}+C \\[7pt]
& \int \sinh x\,\mathrm{d}x=\cosh x+C \\[7pt]
& \int \cosh x\,\mathrm{d}x=\sinh x+C \\[7pt]
& \int \frac{1}{a^2+x^2}\,\mathrm{d}x=\frac{1}{a}\arctan\frac{x}{a}+C \\[7pt]
& \int \frac{1}{a^2-x^2}\,\mathrm{d}x=\frac{1}{2a}\ln \left|\frac{a+x}{a-x}\right|+C \\[7pt]
& \int \frac{1}{\sqrt{a^2-x^2}}\,\mathrm{d}x=\arcsin\frac{x}{a}+C \\[7pt]
& \int \frac{1}{\sqrt{x^2\pm a^2}}\,\mathrm{d}x=\ln \left|x+\sqrt{x^2\pm a^2}\right|+C
\end{align}
\section{基本积分方法}
\subsection{第一类换元法}
\subsubsection{三角函数之积的积分}
\begin{enumerate}
\item 一般地,对于$ \sin^{2k+1}x\cos^n x $ 或$ \sin^n x \cos^{2k+1}x $ (其中$ k\in\mathbb{N} $)型函数的积分,总可依次作变换 $ u=\cos x $或$ u=\sin x $ ,从而求得结果;
\item 一般地,对于$ \sin^{2k}x\cos^{2l}x $ 或 (其中$ k,l\in \mathbb{N} $)型函数的积分,总是利用降幂公式$ \sin^2=\dfrac{1}{2}(1-\cos 2x),
\cos^2=\dfrac{1}{2}(1+\cos 2x) $化成$ \cos 2x $的多项式 ,从而求得结果;
\item 一般地,对于$ \tan^{n}x\sec^{2k} x $ 或$ \tan^{2k-1} x \sec^{n}x $ (其中$ n,k\in\mathbb{N}_{+} $)型函数的积分,总可依次作变换 $ u=\tan x $或$ u=\sec x $ ,从而求得结果;
\end{enumerate}
\subsubsection{常见的凑微分类型}
\begin{align}
& \int {f( ax + b){\rm{d}}x = }\frac{1}{a}\int {f(ax+b){\mathrm{d}}(ax + b)\;(a \neq 0)} \\[7pt]
& \int {f(a{x^{m + 1}} + b){x^m}{\rm{d}}x} = \frac{1}{{a(m + 1)}}\int {f(a{x^{m + 1}} + b){\rm{d}}(a{x^{m + 1}} + b)} \\[7pt]
& \int {f\left( \frac{1}{x}\right) \frac{{{\rm{d}}x}}{{{x^2}}}\;} = - \int {f\left( \frac{1}{x}\right) {\rm{d}}\left( \frac{{\rm{1}}}{x}\right) \;} \\[7pt]
& \int {f(\ln x)\frac{1}{x}} {\rm{d}}x = \int {f(\ln x){\rm{d(}}\ln x)} \\[7pt]
& \int {f({\mathrm{e}^x})} {\mathrm{e}^x}{\rm{d}}x = \int {f({\mathrm{e}^x}} ){\rm{d(}}{\mathrm{e}^x}) \\[7pt]
& \int {f(\sqrt x } )\frac{{{\rm{d}}x}}{{\sqrt x }} = 2\int {f(\sqrt x } ){\rm{d}}(\sqrt x ) \\[7pt]
& \int {f(\sin x)\cos x{\rm{d}}x = } \int {f(\sin x){\rm{d}}\sin x} \\[7pt]
& \int {f(\cos x)\sin x{\rm{d}}x = } - \int {f(\cos x){\rm{d}}\cos x} \\[7pt]
& \int {f(\tan x){{\sec }^2}} x{\rm{d}}x = \int {f(\tan x){\rm{d}}\tan x} \\[7pt]
& \int {f(\cot x){{\csc }^2}} x{\rm{d}}x = - \int {f(\cot x){\rm{d}}\cot x} \\[7pt]
& \int {f(\arcsin x)\frac{1}{{\sqrt {1 - {x^2}} }}} {\rm{d}}x = \int {f(\arcsin x){\rm{d}}\arcsin x} \\[7pt]
& \int {f(\arctan x)\frac{1}{{1 + {x^2}}}} {\rm{d}}x = \int {f(\arctan x){\rm{d}}\arctan x} \\[7pt]
& \int {\frac{{f'(x)}}{{f(x)}}} {\rm{d}}x = \int {\frac{{{\rm{d}}f(x)}}{{f(x)}}} = \ln \left| f(x)\right| + C
\end{align}
\subsection{有理函数的积分}
\subsubsection{部分分式}
\begin{align}
\frac{{P(x)}}{{Q(x)}} = & \frac{{{A_1}}}{{{{(x - a)}^\alpha }}} + \frac{{{A_2}}}{{{{(x - a)}^{\alpha - 1}}}} + \cdots + \frac{{{A_\alpha }}}{{x - a}} + \notag \\
& \frac{{{B_1}}}{{{{(x - b)}^\beta }}} + \frac{{{B_2}}}{{{{(x - b)}^{\beta - 1}}}} + \cdots + \frac{{{B_\beta }}}{{x - b}} + \notag \\
& \frac{{{M_1}x + {N_1}}}{{{{({x^2} + px + q)}^\lambda }}} + \frac{{{M_2}x + {N_2}}}{{{{({x^2} + px + q)}^{\lambda - 1}}}} + \cdots + \frac{{{M_\lambda }x + {N_\lambda }}}{{{x^2} + px + q}} + \notag \\
& \cdots
\end{align}
\subsubsection{三角函数的特殊定积分}
\begin{align}
I_n & =\int_0^{\frac{\pi}{2}}\sin^nx\,\mathrm{d}x=\int_0^{\frac{\pi}{2}}\cos^nx\,\mathrm{d}x\notag \\
I_n & =\frac{n-1}{n}I_{n-2}\notag \\
& =\begin{cases}
\ \dfrac{{n - 1}}{n} \cdot \dfrac{{n - 3}}{{n - 2}} \cdots \dfrac{4}{5} \cdot \dfrac{2}{3}\quad (n\mbox{为大于}1\mbox{的正奇数}),I_1=1 \\[13pt]
\ \dfrac{{n - 1}}{n} \cdot \dfrac{{n - 3}}{{n - 2}} \cdots \dfrac{3}{4} \cdot \dfrac{1}{2} \cdot \dfrac{\pi }{2}\quad (n\mbox{为正偶数}),I_0=\dfrac{\pi}{2}
\end{cases}
\end{align}
\section{多元函数微分}
\subsection{偏导数}
\subsubsection{偏导数记法}
设函数$ z=f(x,y) $在区域$ D $内有偏导数:\[\frac{{\partial z}}{{\partial x}} = {f_x}(x,y),\quad \frac{{\partial z}}{{\partial y}} = {f_y}(x,y)\]他们的偏导数若存在,那么称其偏导数为$ z=f(x,y) $的\md{二阶偏导数}.按照对变量求导次序不同,有如下四个二阶偏导数:\begin{align*}
& \frac{\partial }{{\partial x}}\left( {\frac{{\partial z}}{{\partial x}}} \right) = \frac{{{\partial ^2}z}}{{\partial {x^2}}} = {f_{xx}}(x,y) & \frac{\partial }{{\partial y}}\left( {\frac{{\partial z}}{{\partial x}}} \right) = \frac{{{\partial ^2}z}}{{\partial x\partial y}} = {f_{xy}}(x,y) \\[7pt]
& \frac{\partial }{{\partial x}}\left( {\frac{{\partial z}}{{\partial y}}} \right) = \frac{{{\partial ^2}z}}{{\partial y\partial x}} = {f_{yx}}(x,y) & \frac{\partial }{{\partial y}}\left( {\frac{{\partial z}}{{\partial y}}} \right) = \frac{{{\partial ^2}z}}{{\partial {y^2}}} = {f_{yy}}(x,y).
\end{align*}
\subsection{全微分}
\section{微分方程(该部分将会采用详细的讲义样式)}
\subsection{微分方程的基本概念}
\begin{definition}[微分方程的定义]
一般地,凡表示\md{未知函数},\md{未知函数的导数}与\md{自变量之间的关系的方程},称为\textbf{微分方程}.
其中未知函数的最高阶导数的阶数,称为\textbf{微分方程的阶}.一般地,$n$阶微分方程的形式是:\[
F(
x,y,y',\cdots,y^{(n)}
)=0
\]
\end{definition}
\begin{definition}[微分方程的解]
设函数$y=\varphi(x)$在区间$I$上有$n$阶连续导数,如果在区间$I$上有:\[
F[x,\varphi(x),\varphi'(x),\cdots,\varphi^{(n)}(x)]\equiv 0,
\]那么函数$y=\varphi(x)$称为\textbf{微分方程$ F(x,y,y',\cdots,y^{(n)})=0$在区间$I$上的解}
特别地,如果微分方程的解\md{含有任意常数}\footnote{此处的任意常数必须是相互独立的,或者说他们线性无关.},且任意常数的个数与微分方程的阶数相同,这样的解称为\textbf{微分方程的通解}.
通解中时常含有任意常数,所以它还不能完全确定地反映某一客观事物的规律性.所以为了完全确定地反映客观事物的规律性,必须确定这些常数的值.为此要根据问题的实际情况,提出确定这些常数的条件.例如设一阶微分方程中的未知函数为$y=\varphi (x)$,通常给出的条件为$x=x_0,y=y_0$,也记为$y|_{x=x_0}=y_0$.
因此我们定义,在实际问题中所给定的能够确定这些常数的条件称为\textbf{初值条件}.由初值条件确定了常数的值进而可以得到微分方程的\textbf{特解}.
\end{definition}
\section{可分离变量的微分方程}
本节我们将讨论一阶微分方程$y'=f(x,y)$
\end{document}