-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
342 lines (306 loc) · 14.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
if __name__ == "__main__":
import os
os.environ['TF_GPU_THREAD_MODE'] = "gpu_private"
import numpy as np
from datetime import datetime
# import tensorflow as tf Not needed since its imported through GavinBackend.models
import tensorflow_datasets as tfds
import GavinBackend.preprocessing.text as gbpte
import GavinBackend.preprocessing.concurrent as gbpc
import GavinBackend.preprocessing.tokenise as gbpt
import GavinBackend.functions as gbf
from tensorboard.plugins import projector
from GavinBackend.models import Transformer, tf, DocumentLevelContextTransformer
from GavinBackend.callbacks.model_callbacks import PredictCallback
from tensorflow.keras.utils import plot_model
from tensorflow.keras.mixed_precision import experimental as mixed_precision
# from keras.preprocessing.text import Tokenizer Different Tokenizer. Only words known to this tokenizer will get encoded
other_policy = 'n' # input("Do you want to enabled mixed precision? y/n (NOT SUPPORTED YET): ")
gpus = tf.config.experimental.list_physical_devices('GPU')
if other_policy == 'y':
MIXED = True
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(f"{len(gpus)} Physical GPUS, {len(logical_gpus)} Logical GPUS.")
except RuntimeError as e:
print(e)
policy = mixed_precision.Policy('mixed_float16')
mixed_precision.set_policy(policy)
else:
MIXED = False
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.compat.v1.Session(config=config)
print(f"TensorFlow Version: {tf.__version__}")
print(f"Numpy Version: {np.__version__}")
print(f"Eager execution: {tf.executing_eagerly()}")
path_to_dataset = "cornell movie-dialogs corpus"
path_to_movie_lines = os.path.join(path_to_dataset, "movie_lines.txt")
path_to_movie_conversations = os.path.join(path_to_dataset, "movie_conversations.txt")
# User Input Data
MODEL_TYPE = input("What type of model? (DLC/Reg): ")
while MODEL_TYPE.lower() not in ['dlc', 'reg']:
MODEL_TYPE = input("Please select either Document Level Context(DLC) or Transformer (Reg): ")
MAX_SAMPLES = int(input("MAX_SAMPLES: "))
name = input("Please enter a ModelName for this train: ")
log_dir = "bunchOfLogs/" + name
BATCH_SIZE = int(input("BATCH_SIZE(32): "))
BUFFER_SIZE = 20_000
MAX_LENGTH = 200 + 2
# Hyper-parameters
NUM_LAYERS = int(input("Please enter the number of NUM_LAYERS(4): "))
D_MODEL = int(input("Please enter the d_model(256): "))
NUM_HEADS = int(input("Please enter the NUM_HEADS(8): "))
UNITS = int(input("Please enter the number of units(512): "))
DROPOUT = float(input("Please enter the DROPOUT(0.175): "))
EPOCHS = int(input("Please enter the number of epochs(15): "))
load = input("Would you like to load the tokenizer? y/n: ")
tokenizerPath = None
if load == "y":
tokenizerPath = input("Please enter the path the tokenizer: ")
regex = input("Do you need to run regex? y/n: ")
cores = int(input("How many cores would you like to use for pre-processing: "))
regex_cores = cores
TARGET_VOCAB_SIZE = 2 ** 14
checkpoint_path = f"{log_dir}/cp.ckpt"
try:
os.mkdir(f"{log_dir}")
os.mkdir(f"{log_dir}/model/")
os.mkdir(f"{log_dir}/pickles/")
os.mkdir(f"{log_dir}/tokenizer")
os.mkdir(f"{log_dir}/values/")
os.mkdir(f"{log_dir}/images/")
os.mkdir(f"{log_dir}/logs/")
except FileExistsError:
print("Already exists not creating folders")
pass
reddit_set_max = MAX_SAMPLES
movie_dialog_max = int(input("How many phrases from Movie Dialogue(Max 600k): "))
while reddit_set_max > MAX_SAMPLES or None:
reddit_set_max = int(input("Please enter a valid number\n>"))
if movie_dialog_max > 600000:
movie_dialog_max = int(input("Please enter a valid number. The movie dialog only has 600k samples: "))
print("Loading files...")
questions, answers= gbpte.load_data(reddit_set_max, movie_dialog_max, path_to_movie_lines, path_to_movie_conversations)
print("Done loading...")
if regex == "y": # If we're running the regex do this.
questions, answers = gbpc.regex_main(questions, answers, regex_cores)
if load == "n": # If we're not loading the tokenizer then generate this
print("Starting Tokenizer this may take a while....")
# Build tokenizer using tfds for both questions and answers
tokenizer = tfds.deprecated.text.SubwordTextEncoder.build_from_corpus(
questions + answers, target_vocab_size=TARGET_VOCAB_SIZE)
tokenizer.save_to_file(f"{log_dir}/tokenizer/vocabTokenizer")
else: # load the tokenizer
tokenizer = tfds.deprecated.text.SubwordTextEncoder.load_from_file(tokenizerPath)
tokenizer.save_to_file(f"{log_dir}/tokenizer/vocabTokenizer")
print("Done Tokenizer.")
# Define start and end token to indicate the start and end of a sentence
START_TOKEN, END_TOKEN = [tokenizer.vocab_size], [tokenizer.vocab_size + 1] # Set the START and END tokens
# Vocabulary size plus start and end token
VOCAB_SIZE = tokenizer.vocab_size + 2 # In create the vocab size to account for the start end token
print(f"Pickling Questions and answers for {name}")
questionsMarshal = f"{log_dir}/pickles/{name}_questions.marshal"
answersMarshal = f"{log_dir}/pickles/{name}_answers.marshal"
# gbpc.save_files(questions, answers, questionsMarshal, answersMarshal)
print(f"Done saving....")
mirrored_strategy = tf.distribute.MirroredStrategy() # Use mirrored strategy to use multi gpu
print("Filtering data")
if MODEL_TYPE.lower() == "dlc":
context = gbpt.tokenize_and_filter_dlc(context=questions+answers, cores=cores, max_len=MAX_LENGTH, s_token=START_TOKEN, e_token=END_TOKEN, tokenizer=tokenizer)
questions, answers = gbpt.tokenize_and_filter(questions, answers, cores, MAX_LENGTH, START_TOKEN, END_TOKEN, tokenizer)
print(f"Answers: {len(answers)}\nQuestions: {len(questions)}")
context = context[0: len(questions)]
print("Dont Filtering")
sizes = (len(questions), len(answers), len(context))
questions_train = questions[0: int(sizes[0] * .80)]
questions_val = questions[int(sizes[0] * 0.80):]
answers_train = answers[0: int(sizes[1] * .80)]
answers_val = answers[int(sizes[1] * .80):]
context_train = context[0: int(sizes[2] * .80)]
context_val = context[int(sizes[2] * .8):]
# decoder inputs use the previous target as input
# remove s_token from targets amd context
# e_token not added to context.
print("Beginning Dataset shuffling, batching and prefetch")
dataset_train = tf.data.Dataset.from_tensor_slices((
{
'inputs': questions_train, # Source
'dec_inputs': answers_train[:, :-1], # Targets
'context_inputs': context_train # Context
},
{
'outputs': answers_train[:, 1:] # Outputs
}
))
dataset_val = tf.data.Dataset.from_tensor_slices((
{
'inputs': questions_val, # Source
'dec_inputs': answers_val[:, :-1], # Targets
'context': context_val # Context
},
{
'outputs': answers_val[:, 1:] # Outputs
}
))
dataset_train = dataset_train.cache()
dataset_train = dataset_train.shuffle(BUFFER_SIZE)
dataset_train = dataset_train.batch(BATCH_SIZE)
dataset_train = dataset_train.prefetch(tf.data.experimental.AUTOTUNE)
options = tf.data.Options()
options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.DATA
print("Done Dataset Shuffling, Batching and Prefetch")
with mirrored_strategy.scope(): # Use the mirrored strategy to create the model
transformer = DocumentLevelContextTransformer(
vocab_size=VOCAB_SIZE,
num_layers=NUM_LAYERS,
units=UNITS,
d_model=D_MODEL,
num_heads=NUM_HEADS,
dropout=DROPOUT,
mixed=MIXED)
model = transformer.return_model()
else:
questions, answers = gbpt.tokenize_and_filter(questions, answers, cores, MAX_LENGTH, START_TOKEN, END_TOKEN, tokenizer) # Filter all the data
sizes = (len(questions), len(answers))
print(f"Answers: {sizes[1]}\nQuestions: {sizes[0]}")
questions_train = questions[0: int(sizes[0] * .80)]
questions_val = questions[int(sizes[0] * 0.80):]
answers_train = answers[0: int(sizes[1] * .80)]
answers_val = answers[int(sizes[1] * .80):]
print("Done filtering")
# decoder inputs use the previous target as input
# remove s_token from targets
print("Beginning Dataset Shuffling, Batching and Prefetch.")
dataset_train = tf.data.Dataset.from_tensor_slices((
{
'inputs': questions_train, # Source
'dec_inputs': answers_train[:, :-1] # Targets
},
{
'outputs': answers_train[:, 1:] # Outputs
}
))
dataset_val = tf.data.Dataset.from_tensor_slices((
{
'inputs': questions_val, # Source
'dec_inputs': answers_val[:, :-1] # Targets
},
{
'outputs': answers_val[:, 1:] # Outputs
}
))
dataset_train = dataset_train.cache()
dataset_val = dataset_val.cache()
dataset_train = dataset_train.shuffle(BUFFER_SIZE)
dataset_val = dataset_val.shuffle(BUFFER_SIZE)
dataset_train = dataset_train.batch(BATCH_SIZE)
dataset_val = dataset_val.batch(BATCH_SIZE)
dataset_train = dataset_train.prefetch(tf.data.experimental.AUTOTUNE)
dataset_val = dataset_val.prefetch(tf.data.experimental.AUTOTUNE)
options = tf.data.Options()
options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.DATA
dataset_train.with_options(options)
dataset_val.with_options(options)
print("Done Dataset shuffling, batching and prefetch")
with mirrored_strategy.scope(): # Use the mirrored strategy to create the model
transformer = Transformer(
vocab_size=VOCAB_SIZE,
num_layers=NUM_LAYERS,
units=UNITS,
d_model=D_MODEL,
num_heads=NUM_HEADS,
dropout=DROPOUT,
mixed=MIXED)
model = transformer.return_model()
# noinspection PyAbstractClass,PyShadowingNames
class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
def __init__(self, d_model, warmup_steps=5000):
super(CustomSchedule, self).__init__()
self.d_model = d_model
self.d_model = tf.cast(self.d_model, tf.float32)
self.warmup_steps = warmup_steps
def __call__(self, step):
arg1 = tf.math.rsqrt(step)
arg2 = step * (self.warmup_steps ** -1.5)
return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2)
def get_config(self):
config = {
'd_model': self.d_model,
'warmup_steps': self.warmup_steps
}
return config
learning_rate = CustomSchedule(D_MODEL)
optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.91, beta_2=0.98, epsilon=1e-9)
print("Writing metadata")
with open(os.path.join(log_dir, 'metadata.tsv'), "w", encoding="utf-8") as f:
for subwords in tokenizer.subwords:
f.write(f"{subwords}\n")
for unknown in range(1, tokenizer.vocab_size - len(tokenizer.subwords)):
f.write(f"unknown #{unknown}\n")
projector_config = projector.ProjectorConfig()
embedding = projector_config.embeddings.add()
embedding.metadata_path = 'metadata.tsv'
projector.visualize_embeddings(log_dir, projector_config)
linebreak = "--------------------------------"
log = f"""\nDate: {datetime.now().strftime("%d/%m/%Y %H-%M-%S")},
Name: {name},
PATH: {checkpoint_path},
LogDir: {log_dir},
Image_Path: {log_dir}/images/combined_{name}.png,
EPOCHS: {EPOCHS}
MAX_SAMPLES: {MAX_SAMPLES},
MAX_LENGTH: {MAX_LENGTH},
NUM_LAYERS: {NUM_LAYERS},
D_MODEL: {D_MODEL},
NUM_HEADS: {NUM_HEADS},
UNITS: {UNITS},
DROPOUT: {DROPOUT},
BATCH_SIZE: {BATCH_SIZE},
BUFFER_SIZE: {BUFFER_SIZE},
VOCAB_SIZE: {VOCAB_SIZE},
{linebreak}"""
with open("Parameters.txt", "a") as f:
f.write(log)
with open(f"{log_dir}/values/hparams.txt", "w", encoding="utf8") as f:
data = f"""{str(MAX_SAMPLES)}
{name}
{str(MAX_LENGTH)}
{str(BATCH_SIZE)}
{str(BUFFER_SIZE)}
{str(NUM_LAYERS)}
{str(D_MODEL)}
{str(NUM_HEADS)}
{str(UNITS)}
{str(DROPOUT)}
{str(VOCAB_SIZE)}
{str(TARGET_VOCAB_SIZE)}
{str(reddit_set_max - movie_dialog_max - 100_000)}
"""
f.write(data)
f.close()
print("Done writing metadata")
print("Writing Image Structure of the model")
try:
plot_model(model, f"{log_dir}/images/{name}_Image.png", expand_nested=True, show_shapes=True)
except Exception as e:
with open(f"{log_dir}/images/{name}_Image_Error.txt", "w") as f:
f.write(f"Image error: {e}")
print(f"Image error: {e}")
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path, save_weights_only=True, verbose=1)
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1, profile_batch="500, 600")
predict_callback = PredictCallback(tokenizer=tokenizer, start_token=START_TOKEN, end_token=END_TOKEN, max_length=MAX_LENGTH,
log_dir=log_dir)
print("Done.")
print("Starting train....")
model.compile(optimizer=optimizer, loss=gbf.loss_function, metrics=['accuracy'])
with tf.profiler.experimental.Trace("Train"):
model.fit(dataset_train, validation_data=dataset_val, epochs=EPOCHS,
callbacks=[cp_callback, predict_callback, tensorboard_callback], use_multiprocessing=True)
print(log)
print(linebreak)
model.summary()