-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmmbench_evaluation.py
118 lines (100 loc) · 3.73 KB
/
mmbench_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import os
import io
import torch
import base64
import random
import pandas as pd
from PIL import Image
from tqdm import tqdm
from torch.utils.data import Dataset
from utils import parse_args
from inference import MIMPipeline
def decode_base64_to_image(base64_string):
image_data = base64.b64decode(base64_string)
image = Image.open(io.BytesIO(image_data))
return image
class MMBenchDataset(Dataset):
def __init__(self,
data_file,
sys_prompt='There are several options:'):
self.df = pd.read_csv(data_file, sep='\t')
self.sys_prompt = sys_prompt
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
index = self.df.iloc[idx]['index']
image = self.df.iloc[idx]['image']
image = decode_base64_to_image(image)
question = self.df.iloc[idx]['question']
answer = self.df.iloc[idx]['answer'] if 'answer' in self.df.iloc[0].keys() else None
catetory = self.df.iloc[idx]['category']
l2_catetory = self.df.iloc[idx]['l2-category']
option_candidate = ['A', 'B', 'C', 'D', 'E']
options = {
cand: self.load_from_df(idx, cand)
for cand in option_candidate
if self.load_from_df(idx, cand) is not None
}
options_prompt = f'{self.sys_prompt}\n'
for key, item in options.items():
options_prompt += f'{key}. {item}\n'
hint = self.load_from_df(idx, 'hint')
data = {
'img': image,
'question': question,
'answer': answer,
'options': options_prompt,
'category': catetory,
'l2-category': l2_catetory,
'options_dict': options,
'index': index,
'context': hint,
}
return data
def load_from_df(self, idx, key):
if key in self.df.iloc[idx] and not pd.isna(self.df.iloc[idx][key]):
return self.df.iloc[idx][key]
else:
return None
def evaluate(args, agent):
dataset = MMBenchDataset("./data/mmbench_test_20230712.tsv")
results = []
for data in tqdm(dataset):
if data['context'] is not None:
prompt = data['context'] + ' ' + data['question'] + ' ' + data['options']
else:
prompt = data['question'] + ' ' + data['options']
inference_data = {
"conversation": [
{
"role": "user",
"content": f"<image> {prompt}",
"image_list": [data["img"]],
"caption_list": [],
}
],
}
inference_data = agent.run(inference_data)
prediction = inference_data["conversation"][-1]["content"].replace("</s>", "").strip()
# print(f"prediction: ", prediction)
options = data["options"].split("\n")
results.append({
"question": data["question"],
"A": options[0] if len(options) > 0 else "",
"B": options[1] if len(options) > 1 else "",
"C": options[2] if len(options) > 2 else "",
"D": options[3] if len(options) > 3 else "",
"prediction": prediction,
"category": data["category"],
"l2-category": data["l2-category"],
"index": data["index"],
})
if not os.path.exists(args.inference_dir):
os.makedirs(args.inference_dir)
df = pd.DataFrame(results)
df.to_excel(os.path.join(args.inference_dir, "submission.xlsx"), index=False)
if __name__ == "__main__":
args = parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
agent = MIMPipeline(args, device)
evaluate(args, agent)