-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyahoo_data.R
320 lines (185 loc) · 9.44 KB
/
yahoo_data.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
rm(list = ls())
source('functions.R')
library(quantmod)
#### get S&P 100 data from yahoo
symbol <- '^OEX'
option_maturity_year <- c('2017', '2018', '2019')
data_yahoo <- yahoo_data_fct(symbol = symbol,
option_maturity_year = option_maturity_year)
#### test black scholes assumptions on stock prices
## subset data
data_stock <- subset(data_yahoo$data_stock)#, date >= as.Date('2010-01-01'))
plot(data_stock$date, data_stock$OEX.Close, type = 'l')
## log returns
log_return <- log(data_stock$OEX.Close[-1] / data_stock$OEX.Close[-dim(data_stock)[1]])
hist(log_return)
## test independence of log returns - seems OK
acf(log_return)
Box.test(log_return, lag = 1, type = "Ljung-Box")
## test normal distribution - not OK in general! Heavier tales than a normal distribution
qqnorm(log_return);qqline(log_return, col = 2)
shapiro.test(log_return)
#### estimate Q-parameters in GBM - assuming equidistant data - recall drift of stock is not neccessary for pricing!
## mle
dt <- 1/250 # approximate number of observations per year
sigma_mle <- sqrt(var(log_return) / dt)
mu_mle <- mean(log_return) / dt + sigma_mle ^ 2 / 2
## mle variance
var_sigma_mle <- sigma_mle ^ 2 /2
var_mu_mle <- sigma_mle ^ 2 * (2 + sigma_mle ^ 2 * dt) / (2 * dt) # the variance on the drift estimate in GBM is very high
## hist
hist(log_return, freq = FALSE)
lines(sort(log_return), dnorm(sort(log_return), mean = (mu_mle - sigma_mle ^ 2 / 2) * dt, sd = sigma_mle * sqrt(dt)), lwd = 2)
#### compute option prices using black scholes and compare to observed prices
data_option <- data_yahoo$data_option
r <- 0 # constant market rate
price_underlying <- tail(data_stock$OEX.Close, 1)
price_bs_list <- list()
for (option_type in c('calls')) {
for (list_date in names(data_option)) { # number of different maturity dates
data_temp <- data_option[[list_date]][[option_type]]
price_bs_temp <- rep(NA, dim(data_temp)[1])
for (k in 1:dim(data_temp)[1]) {
# black-scholes option price
price_bs_temp[k] <- black_scholes_formula(ttm = data_temp$ttm[k],
s = price_underlying,
K = data_temp$Strike[k],
r = r,
sigma = sigma_mle,
dividend = 0)
}
price_bs_list[[list_date]][[option_type]] <- data.frame(price = price_bs_temp, strike = data_temp$Strike)
}
}
## choose the n maturity dates with most observed option prices and choose options which has a price above x
n <- 4
x <- 100
number_of_options <- sapply(names(price_bs_list), function(i) {
dim(price_bs_list[[i]][['calls']])[1]
})
number_of_options <- rev(sort(number_of_options))[1:n]
number_of_options_index <- which(names(price_bs_list) %in% names(number_of_options))
max_prices <- sapply(names(price_bs_list), function(i) {
max(price_bs_list[[i]][['calls']]$price) > x
})
max_prices_index <- which(max_prices)
index_options <- Reduce(intersect, list(max_prices_index, number_of_options_index))# common elements
## plot observed prices and bs prices
par( mfrow = c( 2, 2 ) )
for (i in index_options) {
x_obs <- data_option[[names(data_option)[i]]][['calls']]$Strike
y_obs <- (data_option[[names(data_option)[i]]][['calls']]$Ask + data_option[[names(data_option)[i]]][['calls']]$Bid) / 2
y_bs <- price_bs_list[[names(data_option)[i]]][['calls']]$price
mean_squared_error <- round(sum((y_obs - y_bs) ^ 2) / length(y_obs), 2)
bid_ask <- round(sum(data_option[[names(data_option)[i]]][['calls']]$Ask - data_option[[names(data_option)[i]]][['calls']]$Bid) / length(y_obs), 2)
plot(x_obs, y_obs,
main = paste('maturity =', names(data_option)[i], '\nmean squared error =', mean_squared_error, '\naverage bid-ask =', bid_ask, sep = ' '),
xlab = 'strike',
ylab = 'price')
points(x_obs, y_bs, type = 'l')
}
## remove options that have not been traded (i.e vol = 0)
par( mfrow = c( 2, 2 ) )
for (i in index_options) {
volume_index <- which(data_option[[names(data_option)[i]]][['calls']]$Vol > 0)
x_obs <- data_option[[names(data_option)[i]]][['calls']]$Strike[volume_index]
y_obs <- (data_option[[names(data_option)[i]]][['calls']]$Ask + data_option[[names(data_option)[i]]][['calls']]$Bid)[volume_index] / 2
y_bs <- price_bs_list[[names(data_option)[i]]][['calls']]$price[volume_index]
mean_squared_error <- round(sum((y_obs - y_bs) ^ 2) / length(y_obs), 2)
bid_ask <- round(sum(data_option[[names(data_option)[i]]][['calls']]$Ask - data_option[[names(data_option)[i]]][['calls']]$Bid) / length(y_obs), 2)
plot(x_obs, y_obs,
main = paste('maturity =', names(data_option)[i], '\nmean squared error =', mean_squared_error, '\naverage bid-ask =', bid_ask, sep = ' '),
xlab = 'strike',
ylab = 'price')
points(x_obs, y_bs, type = 'l')
}
#### implied volatility
vol_implied_list <- list()
for (option_type in c('calls')) {
for (list_date in names(data_option)[index_options]) { # number of different maturity dates
volume_index <- which(data_option[[list_date]][['calls']]$Vol > 0)
data_temp <- data_option[[list_date]][[option_type]][volume_index, ]
vol_implied <- rep(NA, dim(data_temp)[1])
for (k in 1:dim(data_temp)[1]) {
f <- function(sigma) black_scholes_formula(ttm = data_temp$ttm[k],
s = price_underlying,
K = data_temp$Strike[k],
r = r,
sigma,
dividend = 0)
price_obs <- mean(data_temp$Ask[k], data_temp$Bid[k])
vol_implied[k] <- uniroot(function(sigma) f(sigma) - price_obs, c(-0.5, 10))$r
}
vol_implied_list[[list_date]][[option_type]] <- data.frame(vol_implied = vol_implied, strike = data_temp$Strike)
}
}
## plot implied volatility
par( mfrow = c( 2, 2 ) )
for (i in index_options) {
volume_index <- which(data_option[[names(data_option)[i]]][['calls']]$Vol > 0)
x <- data_option[[names(data_option)[i]]][['calls']]$Strike[volume_index] / price_underlying
y <- vol_implied_list[[names(data_option)[i]]][['calls']]$vol_implied
plot(x, y,
main = paste('maturity =', names(data_option)[i], sep = ' '),
xlab = 'strike',
ylab = 'implied volatility',
type = 'l')
abline(h = sigma_mle)
}
## perfect match when using implied volatility - OF COURSE! (sanity check)
price_bs_implied_list <- list()
for (option_type in c('calls')) {
for (list_date in names(data_option)[index_options]) { # number of different maturity dates
volume_index <- which(data_option[[list_date]][['calls']]$Vol > 0)
data_temp <- data_option[[list_date]][[option_type]][volume_index, ]
price_bs_implied <- rep(NA, dim(data_temp)[1])
for (k in 1:dim(data_temp)[1]) {
price_bs_implied[k] <- black_scholes_formula(ttm = data_temp$ttm[k],
s = price_underlying,
K = data_temp$Strike[k],
r = r,
sigma = vol_implied_list[[list_date]][[option_type]]$vol_implied[k],
dividend = 0)
}
price_bs_implied_list[[list_date]][[option_type]] <- data.frame(price = price_bs_implied, strike = data_temp$Strike)
}
}
## plot implied prices
par( mfrow = c( 2, 2 ) )
for (i in index_options) {
volume_index <- which(data_option[[names(data_option)[i]]][['calls']]$Vol > 0)
x <- data_option[[names(data_option)[i]]][['calls']]$Strike[volume_index]
y_obs <- (data_option[[names(data_option)[i]]][['calls']]$Ask + data_option[[names(data_option)[i]]][['calls']]$Bid)[volume_index] / 2
y_implied <- price_bs_implied_list[[names(data_option)[i]]][['calls']]$price
plot(x, y_obs,
main = paste('maturity =', names(data_option)[i], sep = ' '),
xlab = 'strike',
ylab = 'price')
points(x, y_implied, type = 'l')
}
#### backtesting
## sub data
data_stock_backtest <- subset(data_yahoo$data_stock, date < (max(data_yahoo$data_stock$date) - 365) & date > as.Date('2010-01-01'))
## log return
log_return <- log(data_stock_backtest$OEX.Close[-1] / data_stock_backtest$OEX.Close[-dim(data_stock_backtest)[1]])
## mle
dt <- 1/250 # approximate number of observations per year
sigma_mle_bt <- sqrt(var(log_return) / dt)
mu_mle_bt <- mean(log_return) / dt + sigma_mle ^ 2 / 2
## mle variance
var_sigma_mle_bt <- sigma_mle ^ 2 /2
var_mu_mle_bt <- sigma_mle ^ 2 * (2 + sigma_mle ^ 2 * dt) / (2 * dt) # the variance on the drift estimate in GBM is very high
## estimate price of underlying by simulation under P
n <- 100
price_underlying_estimate <- rep(NA, n)
for (i in 1:n) {
price_paths <- simulate_gmb(x0 = tail(data_stock_backtest$OEX.Close, 1),
n = 10 ^ 4, dt = dt,
end_time = 1,
mu = mu_mle_bt,
sigma = sigma_mle_bt,
drift = 'constant')
price_underlying_estimate[i] <- tail(rowMeans(price_paths), 1)
}
hist(price_underlying_estimate)
abline(v = price_underlying)