-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathwang2015_eval.py
87 lines (69 loc) · 3.15 KB
/
wang2015_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import argparse
import gym
import numpy as np
import os
import json
import baselines.common.tf_util as U
import distdeepq
from baselines.common.misc_util import get_wrapper_by_name, SimpleMonitor, boolean_flag, set_global_seeds
from baselines.common.atari_wrappers_deprecated import wrap_dqn
def make_env(game_name):
env = gym.make(game_name + "NoFrameskip-v4")
env_monitored = SimpleMonitor(env)
env = wrap_dqn(env_monitored)
return env_monitored, env
def parse_args():
parser = argparse.ArgumentParser("Evaluate an already learned DQN model.")
# Environment
parser.add_argument("--env", type=str, required=True, help="name of the game")
parser.add_argument("--model-dir", type=str, default=None, help="load model from this directory. ")
boolean_flag(parser, "stochastic", default=True, help="whether or not to use stochastic actions according to models eps value")
boolean_flag(parser, "dueling", default=False, help="whether or not to use dueling model")
return parser.parse_args()
def wang2015_eval(game_name, act, stochastic):
print("==================== wang2015 evaluation ====================")
episode_rewards = []
for num_noops in range(1, 31):
env_monitored, eval_env = make_env(game_name)
eval_env.unwrapped.seed(1)
# get_wrapper_by_name(eval_env, "NoopResetEnv").override_num_noops = num_noops
# XXX: whats this
eval_episode_steps = 0
done = True
while True:
if done:
obs = eval_env.reset()
eval_episode_steps += 1
action = act(np.array(obs)[None], stochastic=stochastic)[0]
obs, reward, done, info = eval_env.step(action)
if done:
obs = eval_env.reset()
if len(info["rewards"]) > 0:
episode_rewards.append(info["rewards"][0])
break
if info["steps"] > 108000: # 5 minutes of gameplay
episode_rewards.append(env_monitored._current_reward)
break
print("Num steps in episode {} was {} yielding {} reward".format(
num_noops, eval_episode_steps, episode_rewards[-1]), flush=True)
print("Evaluation results: " + str(np.mean(episode_rewards)))
print("=============================================================")
return np.mean(episode_rewards)
def main():
set_global_seeds(1)
args = parse_args()
with U.make_session(4) as sess: # noqa
_, env = make_env(args.env)
model_parent_path = distdeepq.parent_path(args.model_dir)
old_args = json.load(open(model_parent_path + '/args.json'))
act = distdeepq.build_act(
make_obs_ph=lambda name: U.Uint8Input(env.observation_space.shape, name=name),
p_dist_func=distdeepq.models.atari_model(),
num_actions=env.action_space.n,
dist_params={'Vmin': old_args['vmin'],
'Vmax': old_args['vmax'],
'nb_atoms': old_args['nb_atoms']})
U.load_state(os.path.join(args.model_dir, "saved"))
wang2015_eval(args.env, act, stochastic=args.stochastic)
if __name__ == '__main__':
main()