-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
316 lines (259 loc) · 10.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import argparse
import os
import shutil
import time
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from utils import densenet as dn
from utils.rotation import rotate_batch
parser = argparse.ArgumentParser(description='PyTorch DenseNet Training')
parser.add_argument('--epochs', default=300, type=int,
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int,
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=64, type=int,
help='mini-batch size (default: 64)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
help='print frequency (default: 10)')
parser.add_argument('--layers', default=40, type=int,
help='total number of layers (default: 40)')
parser.add_argument('--growth', default=12, type=int,
help='number of new channels per layer (default: 12)')
parser.add_argument('--droprate', default=0, type=float,
help='dropout probability (default: 0.0)')
parser.add_argument('--no-augment', dest='augment', action='store_false',
help='whether to use standard augmentation (default: True)')
parser.add_argument('--reduce', default=1.0, type=float,
help='compression rate in transition stage (default: 1.0)')
parser.add_argument('--no-bottleneck', dest='bottleneck', action='store_false',
help='To not use bottleneck block')
parser.add_argument('--resume', default='./runs/DenseNet-40-12-ss/checkpoint.pth.tar', type=str,
help='path to latest checkpoint (default: none)')
parser.add_argument('--name', default='DenseNet-40-12-ss', type=str,
help='name of experiment')
parser.add_argument('--rotation_type', default='rand')
parser.set_defaults(bottleneck=True)
parser.set_defaults(augment=True)
best_prec1 = 0
def main():
global args, best_prec1
args = parser.parse_args()
# Data loading code
normalize = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
std=[x / 255.0 for x in [63.0, 62.1, 66.7]])
if args.augment:
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
else:
transform_train = transforms.Compose([
transforms.ToTensor(),
normalize,
])
transform_test = transforms.Compose([
transforms.ToTensor(),
normalize
])
kwargs = {'num_workers': 1, 'pin_memory': True}
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data', train=True, download=True,
transform=transform_train),
batch_size=args.batch_size, shuffle=True, **kwargs)
val_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data', train=False, transform=transform_test),
batch_size=args.batch_size, shuffle=True, **kwargs)
# create model
model = dn.DenseNet3(args.layers, 10, args.growth, reduction=args.reduce,
bottleneck=args.bottleneck, dropRate=args.droprate)
# get the number of model parameters
print('Number of model parameters: {}'.format(
sum([p.data.nelement() for p in model.parameters()])))
# for training on multiple GPUs.
# Use CUDA_VISIBLE_DEVICES=0,1 to specify which GPUs to use
# model = torch.nn.DataParallel(model).cuda()
model = model.cuda()
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
# define loss function (criterion) and pptimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
nesterov=True,
weight_decay=args.weight_decay)
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch)
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch)
# evaluate on validation set for semantic classification
prec1 = validate(val_loader, model, criterion)
# evaluate on validation set for rotation prediction
test(val_loader, model)
# remember best prec@1 and save checkpoint
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
}, is_best)
print('Best accuracy: ', best_prec1)
def train(train_loader, model, criterion, optimizer, epoch):
"""Train for one epoch on the training set"""
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
target = target.cuda()
input = input.cuda()
# compute output
output, _ = model(input)
loss_cls = criterion(output, target)
# self-supervised
inputs_ssh, labels_ssh = rotate_batch(input, args.rotation_type)
inputs_ssh, labels_ssh = inputs_ssh.cuda(), labels_ssh.cuda()
_, outputs_ssh = model(inputs_ssh)
loss_ssh = criterion(outputs_ssh, labels_ssh)
# simply add two tasks' losses
'''
The users could also choose to only using semantic classification loss to train the backbone
'''
loss = loss_cls + loss_ssh
# measure accuracy and record loss
prec1 = accuracy(output, target, topk=(1,))[0]
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss_Cls {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
loss=losses, top1=top1))
def validate(val_loader, model, criterion):
"""Perform validation on the validation set"""
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
for i, (input, target) in enumerate(val_loader):
target = target.cuda()
input = input.cuda()
# compute output
with torch.no_grad():
output, _ = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec1 = accuracy(output, target, topk=(1,))[0]
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1))
print(' * Prec@1 {top1.avg:.3f}'.format(top1=top1))
return top1.avg
def test(dataloader, model):
criterion = nn.CrossEntropyLoss(reduction='none')
model.eval()
correct = []
losses = []
for batch_idx, (inputs, labels) in enumerate(dataloader):
inputs, labels = rotate_batch(inputs, 'expand')
inputs, labels = inputs.cuda(), labels.cuda()
with torch.no_grad():
_, outputs = model(inputs)
loss = criterion(outputs, labels)
losses.append(loss.cpu())
_, predicted = outputs.max(1)
correct.append(predicted.eq(labels).cpu())
correct = torch.cat(correct).numpy()
model.train()
print('self-supervised.avg:{:.4f}'.format(correct.mean() * 100))
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
"""Saves checkpoint to disk"""
directory = "runs/%s/" % (args.name)
if not os.path.exists(directory):
os.makedirs(directory)
filename = directory + filename
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'runs/%s/' % (args.name) + 'model_best.pth.tar')
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 after 150 and 225 epochs"""
lr = args.lr * (0.1 ** (epoch // 150)) * (0.1 ** (epoch // 225))
# log to TensorBoard
# if args.tensorboard:
# log_value('learning_rate', lr, epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()