-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathctc_beam_search_decoder.cpp
292 lines (270 loc) · 11.1 KB
/
ctc_beam_search_decoder.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Copyright (c) 2022,DeepSpeech Authors
// 2023, 58.com(Wuba) Inc AI Lab
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Modified from DeepSpeech(https://github.com/mozilla/DeepSpeech)
#include "ctc_beam_search_decoder.h"
#include <algorithm>
#include <cmath>
#include <future>
#include <iostream>
#include <limits>
#include <map>
#include <utility>
#include <unordered_map>
#include "ThreadPool/ThreadPool.h"
#include "decoder_utils.h"
#include "fst/fstlib.h"
#include "path_trie.h"
using FSTMATCH = fst::SortedMatcher<fst::StdVectorFst>;
std::vector<std::pair<double, std::vector<int>>> ctc_beam_search_decoder(
const std::vector<std::vector<double>> &log_probs_seq,
const std::vector<std::vector<int>> &log_probs_idx, PathTrie &root,
const bool start, size_t beam_size, int blank_id, int space_id,
double cutoff_prob, Scorer *ext_scorer,
HotWordsBoosting *hotwords_scorer,
const bool use_ngram_score) {
if (start) {
if (ext_scorer != nullptr && !ext_scorer->is_character_based()) {
auto fst_dict = static_cast<fst::StdVectorFst *>(ext_scorer->dictionary);
fst::StdVectorFst *dict_ptr = fst_dict->Copy(true);
root.set_dictionary(dict_ptr);
auto matcher = std::make_shared<FSTMATCH>(*dict_ptr, fst::MATCH_INPUT);
root.set_matcher(matcher);
}
}
int timesteps = log_probs_seq.size();
std::vector<PathTrie *> prefixes;
// update log probs
if (root.log_prob_b_prev == -NUM_FLT_INF && start) {
root.score = root.log_prob_b_prev = 0.0;
}
root.iterate_to_vec_only(prefixes);
int prev_id = -1;
// prefix search over time
for (size_t time_step = 0; time_step < timesteps; ++time_step) {
float min_cutoff = -NUM_FLT_INF;
bool full_beam = false;
auto &log_prob = log_probs_seq[time_step];
auto &log_prob_idx = log_probs_idx[time_step];
double top_prob = exp(log_prob[0]);
auto top_id = log_prob_idx[0];
if (top_prob >= cutoff_prob && top_id == blank_id)
if (prev_id == blank_id) {
continue; // skip this round
} else
prev_id = top_id;
else
prev_id = -1;
// loop over chars
double cur_acc_prob = 0.0;
for (size_t index = 0; index < log_prob.size(); index++) {
auto c = log_prob_idx[index];
float log_prob_c = log_prob[index];
cur_acc_prob += exp(log_prob_c);
if (cur_acc_prob > cutoff_prob && index >= 1) break;
for (size_t i = 0; i < prefixes.size() && i < beam_size; ++i) {
auto prefix = prefixes[i];
if (full_beam && log_prob_c + prefix->score < min_cutoff) {
break;
}
// blank
if (c == blank_id) {
prefix->log_prob_b_cur =
log_sum_exp(prefix->log_prob_b_cur, log_prob_c + prefix->score);
continue;
}
// repeated character
if (c == prefix->character) {
prefix->log_prob_nb_cur = log_sum_exp(
prefix->log_prob_nb_cur, log_prob_c + prefix->log_prob_nb_prev);
}
// get new prefix
auto prefix_new = prefix->get_path_trie(c);
if (prefix_new != nullptr) {
float log_p = -NUM_FLT_INF;
if (c == prefix->character &&
prefix->log_prob_b_prev > -NUM_FLT_INF) {
log_p = log_prob_c + prefix->log_prob_b_prev;
} else if (c != prefix->character) {
log_p = log_prob_c + prefix->score;
}
// language model scoring
if (ext_scorer != nullptr &&
(c == space_id || ext_scorer->is_character_based())) {
PathTrie *prefix_to_score = nullptr;
// skip scoring the space
if (ext_scorer->is_character_based()) {
prefix_to_score = prefix_new;
} else {
prefix_to_score = prefix;
}
float score = 0.0;
std::vector<std::string> ngram;
ngram = ext_scorer->make_ngram(prefix_to_score);
// hot words boosting
float hot_boost = 0.0;
if (hotwords_scorer != nullptr && !hotwords_scorer->hotwords_dict.empty()){
std::unordered_map<std::string, float>::const_iterator iter;
for (size_t index=0; index < ngram.size(); index ++ ) {
std::string word = "";
// character-based language model, combining chinese characters into words
if (ext_scorer->is_character_based()) {
if(index >= ngram.size() -1){
break;
}
word = std::accumulate(ngram.begin() + index, ngram.end(), std::string{});
} else {
// word-level language model, traverse each word in ngram
word = ngram[index];
}
iter = hotwords_scorer->hotwords_dict.find(word);
if (iter != hotwords_scorer->hotwords_dict.end()) {
hot_boost += iter->second;
}
}
}
if (use_ngram_score){
// ngram score and hotwords score
score = ((ext_scorer->get_log_cond_prob((ngram)) + hot_boost) * ext_scorer->alpha) + ext_scorer->beta;
}
else{
// only consider hotwords score
score = hot_boost;
}
log_p += score;
}
prefix_new->log_prob_nb_cur =
log_sum_exp(prefix_new->log_prob_nb_cur, log_p);
}
} // end of loop over prefix
} // end of loop over vocabulary
prefixes.clear();
// update log probs
root.iterate_to_vec(prefixes);
// only preserve top beam_size prefixes
if (prefixes.size() >= beam_size) {
std::nth_element(prefixes.begin(), prefixes.begin() + beam_size,
prefixes.end(), prefix_compare);
for (size_t i = beam_size; i < prefixes.size(); ++i) {
prefixes[i]->remove();
}
}
} // end of loop over time
size_t num_prefixes = std::min(prefixes.size(), beam_size);
std::sort(prefixes.begin(), prefixes.begin() + num_prefixes, prefix_compare);
return get_beam_search_result(prefixes, beam_size);
}
std::string map_sent(const std::vector<int> &sent,
const std::vector<std::string> &vocabulary, bool greedy,
int blank_id) {
std::string output_str;
if (!greedy) {
for (size_t j = 0; j < sent.size(); j++) {
output_str += vocabulary[sent[j]];
}
} else {
// greedy search
int prev = -1;
for (size_t i = 0; i < sent.size(); i++) {
int cur = sent[i];
if (cur != prev && cur != blank_id) output_str += vocabulary[cur];
prev = cur;
}
}
return output_str;
}
std::vector<std::string> map_batch(
const std::vector<std::vector<int>> &batch_sents,
const std::vector<std::string> &vocabulary, size_t num_processes,
bool greedy, int blank_id) {
ThreadPool pool(num_processes);
size_t batch_size = batch_sents.size();
std::vector<std::future<std::string>> res;
for (size_t i = 0; i < batch_size; ++i) {
res.emplace_back(pool.enqueue(map_sent, std::ref(batch_sents[i]),
std::ref(vocabulary), greedy, blank_id));
}
// get decoding results
std::vector<std::string> batch_results;
for (size_t i = 0; i < batch_size; ++i) {
batch_results.emplace_back(res[i].get());
}
return batch_results;
}
std::vector<std::vector<std::pair<double, std::vector<int>>>>
ctc_beam_search_decoder_batch(
const std::vector<std::vector<std::vector<double>>> &batch_log_probs_seq,
const std::vector<std::vector<std::vector<int>>> &batch_log_probs_idx,
std::vector<PathTrie *> &batch_root_trie,
const std::vector<bool> &batch_start, size_t beam_size,
size_t num_processes, int blank_id, int space_id, double cutoff_prob,
Scorer *ext_scorer,
const std::vector<HotWordsBoosting *> *hotwords_scorer,
bool use_ngram_score) {
// thread pool
ThreadPool pool(num_processes);
// number of samples
size_t batch_size = batch_log_probs_seq.size();
// enqueue the tasks of decoding
std::vector<std::future<std::vector<std::pair<double, std::vector<int>>>>>
res;
if (hotwords_scorer != nullptr)
for (size_t i = 0; i < batch_size; ++i) {
res.emplace_back(
pool.enqueue(ctc_beam_search_decoder, std::ref(batch_log_probs_seq[i]),
std::ref(batch_log_probs_idx[i]),
std::ref(*batch_root_trie[i]), batch_start[i], beam_size,
blank_id, space_id, cutoff_prob, ext_scorer, (*hotwords_scorer)[i], use_ngram_score));
}
else{
for (size_t i = 0; i < batch_size; ++i) {
res.emplace_back(
pool.enqueue(ctc_beam_search_decoder, std::ref(batch_log_probs_seq[i]),
std::ref(batch_log_probs_idx[i]),
std::ref(*batch_root_trie[i]), batch_start[i], beam_size,
blank_id, space_id, cutoff_prob, ext_scorer, nullptr, use_ngram_score));
}
}
// get decoding results
std::vector<std::vector<std::pair<double, std::vector<int>>>> batch_results;
for (size_t i = 0; i < batch_size; ++i) {
batch_results.emplace_back(res[i].get());
}
return batch_results;
}