-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbook_2_3.clj
313 lines (262 loc) · 7.07 KB
/
book_2_3.clj
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
(ns sicp.chapter-2.part-3.book-2-3)
(comment "2.3 Symbolic Data ----------------------------------------------------------------------")
(comment "2.3.1 Quotation ------------------------------------------------------------------------")
; Exercises:
; * 2.53
; * 2.54
; * 2.55
(defn memq
[item x]
(cond (empty? x) false
(= item (first x)) x
:else (memq item (rest x))))
(comment "2.3.2 Example: Symbolic Differentiation ------------------------------------------------")
; Exercises:
; * 2.56
; * 2.57
; * 2.58
(defn =number?
[exp num]
(and (number? exp) (= exp num)))
(defn variable?
[x]
(symbol? x))
(defn same-variable?
[v1 v2]
(and (variable? v1) (variable? v2) (= v1 v2)))
(defn sum?
[x]
(and (sequential? x) (= (first x) '+)))
(defn addend
[s]
(second s))
(defn augend
[s]
(nth s 2))
(defn make-sum
[a1 a2]
(cond
(= a1 0) a2
(= a2 0) a1
(and (number? a1) (number? a2)) (+ a1 a2)
:else (list '+ a1 a2)))
(defn product?
[x]
(and (sequential? x) (= (first x) '*)))
(defn multiplier
[p]
(second p))
(defn multiplicand
[p]
(nth p 2))
(defn make-product
[m1 m2]
(cond (or (=number? m1 0) (=number? m2 0)) 0
(=number? m1 1) m2
(=number? m2 1) m1
(and (number? m1) (number? m2)) (* m1 m2)
:else (list '* m1 m2)))
(defn deriv
[exp var]
(cond
(number? exp) 0
(variable? exp) (if (same-variable? exp var) 1 0)
(sum? exp) (make-sum (deriv (addend exp) var)
(deriv (augend exp) var))
(product? exp) (make-sum
(make-product
(multiplier exp)
(deriv (multiplicand exp) var))
(make-product
(deriv (multiplier exp) var)
(multiplicand exp)))
:else (throw (Exception. (str "unknown expression type: DERIV " exp)))))
(comment "2.3.3 Example: Representing Sets -------------------------------------------------------")
; Exercises:
; * 2.59
; * 2.60
; * 2.61
; * 2.62
; * 2.63
; * 2.64
; * 2.65
; * 2.66
(defn element-of-set?
[x set]
(cond
(empty? set) false
(= x (first set)) true
:else (element-of-set? x (rest set))))
(defn adjoin-set
[x set]
(if (element-of-set? x set)
set
(cons x set)))
(defn intersection-set
[set1 set2]
(cond
(or (empty? set1) (empty? set2)) '()
(element-of-set? (first set1) set2)
(cons (first set1) (intersection-set (rest set1) set2))
:else (intersection-set (rest set1) set2)))
; Sorted list for optimization
(defn element-of-set-sorted?
[x set]
(cond (empty? set) false
(= x (first set)) true
(< x (first set)) false
:else (element-of-set-sorted? x (rest set))))
(defn intersection-set-sorted
[set1 set2]
(cond (or (empty? set1) (empty? set2)) '()
:else (let [x1 (first set1) x2 (first set2)]
(cond (= x1 x2) (cons x1 (intersection-set-sorted (rest set1) (rest set2)))
(< x1 x2) (intersection-set-sorted (rest set1) set2)
:else (intersection-set-sorted set1 (rest set2))))))
; List as tree
(defn entry
[tree]
(first tree))
(defn left-branch
[tree]
(if (< 1 (count tree))
(nth tree 1)
'()))
(defn right-branch
[tree]
(if (< 2 (count tree))
(nth tree 2)
'()))
(defn make-tree
[entry left right]
(list entry left right))
(defn element-of-set-tree?
[x set]
(cond (empty? set) false
(= x (entry set)) true
(< x (entry set)) (element-of-set-tree? x (left-branch set))
:else (element-of-set-tree? x (right-branch set))))
(defn adjoin-set-tree
[x set]
(cond (empty? set) (make-tree x '() '())
(= x (entry set)) set
(< x (entry set)) (make-tree (entry set)
(adjoin-set-tree x (left-branch set))
(right-branch set))
:else (make-tree (entry set)
(left-branch set)
(adjoin-set-tree x (right-branch set)))))
(defn lookup
[given-key set-of-records]
(cond
(empty? set-of-records) false
(= given-key (:key (first set-of-records))) (first set-of-records)
:else (lookup given-key (rest set-of-records))))
(comment "2.3.4 Example: Huffman Encoding Trees --------------------------------------------------")
; Exercises:
; * 2.67
; * 2.68
; * 2.69
; * 2.70
; * 2.71
; * 2.72
(defn make-leaf
[symbol weight]
[:leaf symbol weight])
(defn leaf?
[object]
(and (or (list? object) (vector? object))
(= (first object) :leaf)))
(defn symbol-leaf
[x]
(second x))
(defn weight-leaf
[x]
(nth x 2))
(defn left-branch-h
[tree]
(first tree))
(defn right-branch-h
[tree]
(second tree))
(defn symbols
[tree]
(if (leaf? tree)
(list (symbol-leaf tree))
(nth tree 2)))
(defn weight
[tree]
(if (leaf? tree)
(weight-leaf tree)
(nth tree 3)))
(defn make-code-tree
[left right]
[left
right
(concat (symbols left) (symbols right))
(+ (weight left) (weight right))])
(defn choose-branch
[bit branch]
(cond
(= bit 0) (left-branch-h branch)
(= bit 1) (right-branch-h branch)
:else (throw (Exception. (str "bad bit: CHOOSE-BRANCH " bit)))))
(defn decode
[bits tree]
(letfn [(decode-1
[bits current-branch]
(if (empty? bits)
'()
(let [next-branch (choose-branch (first bits) current-branch)]
(if (leaf? next-branch)
(cons (symbol-leaf next-branch)
(decode-1 (rest bits) tree))
(decode-1 (rest bits) next-branch)))))]
(decode-1 bits tree)))
(defn adjoin-set-h
[x set]
(cond
(empty? set) (list x)
(< (weight x) (weight (first set))) (cons x set)
:else (cons (first set)
(adjoin-set-h x (rest set)))))
(defn make-leaf-set
[pairs]
(if (empty? pairs)
'()
(let [pair (first pairs)]
(adjoin-set-h
(make-leaf (first pair) ; symbol
(second pair)) ; frequency
(make-leaf-set (rest pairs))))))
; Samples
(def huffman-pairs '((:A 4) (:B 2) (:C 1) (:D 1)))
(def huffman-tree
(make-code-tree
(make-leaf :A 4)
(make-code-tree
(make-leaf :B 2)
(make-code-tree
(make-leaf :D 1)
(make-leaf :C 1)))))
(def huffman-tree-as-list
'[[:leaf :A 4]
[[:leaf :B 2]
[[:leaf :D 1]
[:leaf :C 1]
(:D :C) 2]
(:B :D :C) 4]
(:A :B :D :C) 8])
(def huffman-message-decoded
'(0 ; A
1 1 0 ; D
0 ; A
1 0 ; B
1 0 ; B
1 1 1 ; C
0)) ; A
(def huffman-message-encoded '(:A :D :A :B :B :C :A))
(def huffman-A '(0))
(def huffman-B '(1 0))
(def huffman-C '(1 1 1))
(def huffman-D '(1 1 0))