-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrecursive.py
63 lines (53 loc) · 1.96 KB
/
recursive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
"""
Algorithm that uses its output to alter the input for the next iteration, until a certain condition is met.
"""
# Copyright (c) 2023-2024. ECCO Sneaks & Data
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import abstractmethod
from adapta.metrics import MetricsProvider
from injector import inject
from esd_services_api_client.nexus.abstractions.algrorithm_cache import InputCache
from esd_services_api_client.nexus.abstractions.logger_factory import LoggerFactory
from esd_services_api_client.nexus.abstractions.nexus_object import (
TPayload,
AlgorithmResult,
)
from esd_services_api_client.nexus.algorithms._baseline_algorithm import (
BaselineAlgorithm,
)
from esd_services_api_client.nexus.input import InputProcessor
class RecursiveAlgorithm(BaselineAlgorithm[TPayload]):
"""
Recursive algorithm base class.
"""
@inject
def __init__(
self,
metrics_provider: MetricsProvider,
logger_factory: LoggerFactory,
*input_processors: InputProcessor,
cache: InputCache,
):
super().__init__(
metrics_provider, logger_factory, *input_processors, cache=cache
)
@abstractmethod
async def _is_finished(self, **kwargs) -> bool:
""" """
async def run(self, **kwargs) -> AlgorithmResult:
result = await self._run(**kwargs)
if self._is_finished(**result.to_kwargs()):
return result
return await self.run(**result.to_kwargs())