forked from gurkirt/3D-RetinaNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_dets.py
322 lines (261 loc) · 13.4 KB
/
gen_dets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
"""
Testing
"""
import os
import time, json
import datetime
import numpy as np
import torch
import pdb
import pickle
import copy
import torch.utils.data as data_utils
from modules.evaluation import evaluate_frames
from modules.box_utils import decode, nms
from data import custum_collate
from modules import utils
import modules.evaluation as evaluate
from modules.utils import make_joint_probs_from_marginals
logger = utils.get_logger(__name__)
def gen_dets(args, net, val_dataset):
net.eval()
val_data_loader = data_utils.DataLoader(val_dataset, int(args.TEST_BATCH_SIZE), num_workers=args.NUM_WORKERS,
shuffle=False, pin_memory=True, collate_fn=custum_collate)
for epoch in args.EVAL_EPOCHS:
args.det_itr = epoch
logger.info('Testing at ' + str(epoch))
args.det_save_dir = os.path.join(args.SAVE_ROOT, "detections-{it:02d}-{sq:02d}-{n:d}/".format(it=epoch, sq=args.TEST_SEQ_LEN, n=int(100*args.GEN_NMS)))
logger.info('detection saving dir is :: '+args.det_save_dir)
is_all_done = True
if os.path.isdir(args.det_save_dir):
for vid, videoname in enumerate(val_dataset.video_list):
save_dir = '{:s}/{}'.format(args.det_save_dir, videoname)
if os.path.isdir(save_dir):
numf = val_dataset.numf_list[vid]
dets_list = [d for d in os.listdir(save_dir) if d.endswith('.pkl')]
if numf != len(dets_list):
is_all_done = False
print('Not done', save_dir, numf, len(dets_list))
break
else:
is_all_done = False
break
else:
is_all_done = False
os.makedirs(args.det_save_dir)
if is_all_done:
print('All done! skipping detection')
continue
args.MODEL_PATH = args.SAVE_ROOT + 'model_{:06d}.pth'.format(epoch)
net.load_state_dict(torch.load(args.MODEL_PATH))
logger.info('Finished loading model %d !' % epoch )
torch.cuda.synchronize()
tt0 = time.perf_counter()
net.eval() # switch net to evaluation mode
mAP, _, ap_strs = perform_detection(args, net, val_data_loader, val_dataset, epoch)
label_types = [args.label_types[0]] + ['ego_action']
for nlt in range(len(label_types)):
for ap_str in ap_strs[nlt]:
logger.info(ap_str)
ptr_str = '\n{:s} MEANAP:::=> {:0.5f}'.format(label_types[nlt], mAP[nlt])
logger.info(ptr_str)
torch.cuda.synchronize()
logger.info('Complete set time {:0.2f}'.format(time.perf_counter() - tt0))
def perform_detection(args, net, val_data_loader, val_dataset, iteration):
"""Test a network on a video database."""
num_images = len(val_dataset)
print_time = True
val_step = 50
count = 0
torch.cuda.synchronize()
ts = time.perf_counter()
activation = torch.nn.Sigmoid().cuda()
ego_pds = []
ego_gts = []
det_boxes = []
gt_boxes_all = []
for nlt in range(1):
numc = args.num_classes_list[nlt]
det_boxes.append([[] for _ in range(numc)])
gt_boxes_all.append([])
nlt = 0
processed_videos = []
with torch.no_grad():
for val_itr, (images, gt_boxes, gt_targets, ego_labels, batch_counts, img_indexs, wh) in enumerate(val_data_loader):
torch.cuda.synchronize()
t1 = time.perf_counter()
batch_size = images.size(0)
images = images.cuda(0, non_blocking=True)
decoded_boxes, confidence, ego_preds = net(images)
ego_preds = activation(ego_preds).cpu().numpy()
ego_labels = ego_labels.numpy()
confidence = activation(confidence)
seq_len = ego_preds.shape[1]
if val_itr == 5:
os.system("nvidia-smi")
if print_time and val_itr%val_step == 0:
torch.cuda.synchronize()
tf = time.perf_counter()
logger.info('Forward Time {:0.3f}'.format(tf-t1))
for b in range(batch_size):
index = img_indexs[b]
annot_info = val_dataset.ids[index]
if args.DATASET != 'ava':
video_id, frame_num, step_size = annot_info
else:
video_id, frame_num, step_size, keyframe = annot_info
startf = frame_num
temp_startf = frame_num
frame_num = keyframe-1
videoname = val_dataset.video_list[video_id]
save_dir = '{:s}/{}'.format(args.det_save_dir, videoname)
store_last = False
if videoname not in processed_videos:
processed_videos.append(videoname)
store_last = True
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
count += 1
for si in range(seq_len):
if args.DATASET == 'ava' and startf != keyframe:
startf += step_size
continue
if ego_labels[b,si]>-1:
ego_pds.append(ego_preds[b,si,:])
ego_gts.append(ego_labels[b,si])
gt_boxes_batch = gt_boxes[b, si, :batch_counts[b, si],:].numpy()
gt_labels_batch = gt_targets[b, si, :batch_counts[b, si]].numpy()
decoded_boxes_batch = decoded_boxes[b,si]
frame_gt = utils.get_individual_labels(gt_boxes_batch, gt_labels_batch[:,:1])
gt_boxes_all[0].append(frame_gt)
confidence_batch = confidence[b,si]
scores = confidence_batch[:, 0].squeeze().clone()
cls_dets, save_data = utils.filter_detections_for_dumping(args, scores, decoded_boxes_batch, confidence_batch)
det_boxes[0][0].append(cls_dets)
# print('number of samples', batch_counts[b, si].sum())
# pdb.set_trace()
save_name = '{:s}/{:05d}.pkl'.format(save_dir, frame_num+1)
frame_num += step_size
save_data = {'ego':ego_preds[b,si,:], 'main':save_data}
if si<seq_len-args.skip_ending or store_last:
with open(save_name,'wb') as ff:
pickle.dump(save_data, ff)
if args.DATASET == 'ava':
startf += step_size
if print_time and val_itr%val_step == 0:
torch.cuda.synchronize()
te = time.perf_counter()
logger.info('im_detect: {:d}/{:d} time taken {:0.3f}'.format(count, num_images, te-ts))
torch.cuda.synchronize()
ts = time.perf_counter()
if print_time and val_itr%val_step == 0:
torch.cuda.synchronize()
te = time.perf_counter()
logger.info('NMS stuff Time {:0.3f}'.format(te - tf))
mAP, ap_all, ap_strs = evaluate.evaluate(gt_boxes_all, det_boxes, args.all_classes, iou_thresh=args.IOU_THRESH)
mAP_ego, ap_all_ego, ap_strs_ego = evaluate.evaluate_ego(np.asarray(ego_gts), np.asarray(ego_pds), args.ego_classes)
return mAP + [mAP_ego], ap_all + [ap_all_ego], ap_strs + [ap_strs_ego]
def gather_framelevel_detection(args, val_dataset):
detections = {}
for l, ltype in enumerate(args.label_types):
detections[ltype] = {}
if args.DATASET == 'road':
detections['av_actions'] = {}
else:
detections['frame_actions'] = {}
numv = len(val_dataset.video_list)
for vid, videoname in enumerate(val_dataset.video_list):
vid_dir = os.path.join(args.det_save_dir, videoname)
frames_list = os.listdir(vid_dir)
for frame_name in frames_list:
if not frame_name.endswith('.pkl'):
continue
save_name = os.path.join(vid_dir, frame_name)
with open(save_name,'rb') as ff:
dets = pickle.load(ff)
frame_name = frame_name.rstrip('.pkl')
# detections[videoname+frame_name] = {}
if args.DATASET == 'road':
detections['av_actions'][videoname+frame_name] = dets['ego']
else:
detections['frame_actions'][videoname+frame_name] = dets['ego']
frame_dets = dets['main']
if args.JOINT_4M_MARGINALS:
frame_dets = make_joint_probs_from_marginals(frame_dets, val_dataset.childs, args.num_classes_list)
start_id = 4
for l, ltype in enumerate(args.label_types):
numc = args.num_classes_list[l]
ldets = get_ltype_dets(frame_dets, start_id, numc, ltype, args)
detections[ltype][videoname+frame_name] = ldets
start_id += numc
logger.info('[{}/{}] Done for {}'.format(vid, numv, videoname))
# break
logger.info('Dumping detection in ' + args.det_file_name)
with open(args.det_file_name, 'wb') as f:
pickle.dump(detections, f)
logger.info('Done dumping')
def get_ltype_dets(frame_dets, start_id, numc, ltype, args):
dets = []
for cid in range(numc):
if frame_dets.shape[0]>0:
boxes = frame_dets[:, :4].copy()
scores = frame_dets[:, start_id+cid].copy()
pickn = boxes.shape[0]
if args.CLASSWISE_NMS:
cls_dets = utils.filter_detections(args, torch.from_numpy(scores), torch.from_numpy(boxes))
elif pickn<= args.TOPK+15:
cls_dets = np.hstack((boxes[:pickn,:], scores[:pickn, np.newaxis]))
if not args.JOINT_4M_MARGINALS:
cls_dets = cls_dets[scores>args.CONF_THRESH,:]
else:
sorted_ind = np.argsort(-scores)
sorted_ind = sorted_ind[:args.TOPK+15]
cls_dets = np.hstack((boxes[sorted_ind,:], scores[sorted_ind, np.newaxis]))
scores = scores[sorted_ind]
if not args.JOINT_4M_MARGINALS:
cls_dets = cls_dets[scores>args.CONF_THRESH,:]
else:
cls_dets = np.asarray([])
dets.append(cls_dets)
return dets
def eval_framewise_dets(args, val_dataset):
for epoch in args.EVAL_EPOCHS:
log_file = open("{pt:s}/frame-level-resutls-{it:06d}-{sq:02d}-{n:d}.log".format(pt=args.SAVE_ROOT, it=epoch, sq=args.TEST_SEQ_LEN, n=int(100*args.GEN_NMS)), "a", 10)
args.det_save_dir = os.path.join(args.SAVE_ROOT, "detections-{it:02d}-{sq:02d}-{n:d}/".format(it=epoch, sq=args.TEST_SEQ_LEN, n=int(100*args.GEN_NMS)))
args.det_file_name = "{pt:s}/frame-level-dets-{it:02d}-{sq:02d}-{n:d}.pkl".format(pt=args.SAVE_ROOT, it=epoch, sq=args.TEST_SEQ_LEN, n=int(100*args.GEN_NMS))
result_file = "{pt:s}/frame-ap-results-{it:02d}-{sq:02d}-{n:d}.json".format(pt=args.SAVE_ROOT, it=epoch, sq=args.TEST_SEQ_LEN,n=int(100*args.GEN_NMS))
if args.JOINT_4M_MARGINALS:
log_file = open("{pt:s}/frame-level-resutls-{it:06d}-{sq:02d}-{n:d}-j4m.log".format(pt=args.SAVE_ROOT, it=epoch, sq=args.TEST_SEQ_LEN, n=int(100*args.GEN_NMS)), "a", 10)
args.det_file_name = "{pt:s}/frame-level-dets-{it:02d}-{sq:02d}-{n:d}-j4m.pkl".format(pt=args.SAVE_ROOT, it=epoch, sq=args.TEST_SEQ_LEN, n=int(100*args.GEN_NMS))
result_file = "{pt:s}/frame-ap-results-{it:02d}-{sq:02d}-{n:d}-j4m.json".format(pt=args.SAVE_ROOT, it=epoch, sq=args.TEST_SEQ_LEN,n=int(100*args.GEN_NMS))
doeval = True
if not os.path.isfile(args.det_file_name):
logger.info('Gathering detection for ' + args.det_file_name)
gather_framelevel_detection(args, val_dataset)
logger.info('Done Gathering detections')
doeval = True
else:
logger.info('Detection will be loaded: ' + args.det_file_name)
if args.DATASET == 'road':
label_types = args.label_types + ['av_actions']
elif args.DATASET == 'ucf24':
label_types = args.label_types + ['frame_actions']
else:
label_types = args.label_types
if doeval or not os.path.isfile(result_file):
results = {}
for subset in args.SUBSETS:
if len(subset)<2:
continue
sresults = evaluate_frames(val_dataset.anno_file, args.det_file_name, subset, iou_thresh=0.5, dataset=args.DATASET)
for _, label_type in enumerate(label_types):
name = subset + ' & ' + label_type
rstr = '\n\nResults for ' + name + '\n'
logger.info(rstr)
log_file.write(rstr+'\n')
results[name] = {'mAP': sresults[label_type]['mAP'], 'APs': sresults[label_type]['ap_all']}
for ap_str in sresults[label_type]['ap_strs']:
logger.info(ap_str)
log_file.write(ap_str+'\n')
with open(result_file, 'w') as f:
json.dump(results, f)