-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathConv.py
51 lines (50 loc) · 1.96 KB
/
Conv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import time
from keras.models import Sequential
from keras.layers import Dense,InputLayer,Dropout,LSTM,Conv1D,Flatten,GlobalAveragePooling1D,MaxPool1D
from keras.callbacks import TensorBoard
from keras.optimizers import Adam
from processing import build_dataset
from utils import init_session
from MLP import test
init_session()
batch_size=500
epochs_num=1
process_datas_dir="file\\process_datas.pickle"
log_dir="log\\Conv.log"
model_dir="file\\Conv_model"
def train(train_generator,train_size,input_num,dims_num):
print("Start Train Job! ")
start=time.time()
inputs=InputLayer(input_shape=(input_num,dims_num),batch_size=batch_size)
layer1=Conv1D(64,3,activation="relu")
layer2=Conv1D(64,3,activation="relu")
layer3=Conv1D(128,3,activation="relu")
layer4=Conv1D(128,3,activation="relu")
layer5=Dense(128,activation="relu")
output=Dense(2,activation="softmax",name="Output")
optimizer=Adam()
model=Sequential()
model.add(inputs)
model.add(layer1)
model.add(layer2)
model.add(MaxPool1D(pool_size=2))
model.add(Dropout(0.5))
model.add(layer3)
model.add(layer4)
model.add(MaxPool1D(pool_size=2))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(layer5)
model.add(Dropout(0.5))
model.add(output)
call=TensorBoard(log_dir=log_dir,write_grads=True,histogram_freq=1)
model.compile(optimizer,loss="categorical_crossentropy",metrics=["accuracy"])
model.fit_generator(train_generator,steps_per_epoch=train_size//batch_size,epochs=epochs_num,callbacks=[call])
# model.fit_generator(train_generator, steps_per_epoch=5, epochs=5, callbacks=[call])
model.save(model_dir)
end=time.time()
print("Over train job in %f s"%(end-start))
if __name__=="__main__":
train_generator, test_generator, train_size, test_size, input_num, dims_num=build_dataset(batch_size)
train(train_generator,train_size,input_num,dims_num)
test(model_dir,test_generator,test_size,input_num,dims_num,batch_size)