-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathpick_place.py
146 lines (124 loc) · 5.06 KB
/
pick_place.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import gym
from gym import spaces
from gym.envs.registration import register
from gym.envs.robotics.fetch import pick_and_place
from rl_with_teachers.teachers.pick_place import *
import random
import numpy as np
class FetchOneGoalPickPlaceEnv(pick_and_place.FetchPickAndPlaceEnv):
"""
A mujoco task with a fetch robot that needs to pick up a cube and move it to a
goal point (or just push it there).
"""
OBJECT_START = np.array([1.25, 0.55])
OBJECT_START_WITH_Z = np.array([1.25, 0.55, 0.425])
ROBOT_START = np.array([1.34184371, 0.75, 0.5])
def __init__(self,
sparse=True,
goal=np.array([1.45, 0.55, 0.425]),
better_dense_reward=False):
self.goal = goal
self.better_dense_reward = better_dense_reward
super().__init__('sparse' if sparse else 'dense')
self.is_sparse = sparse
obs = self._get_obs()
self.observation_space = spaces.Box(-np.inf, np.inf, shape=(28,), dtype='float32')
def step(self, action):
obs, reward, done, info = super().step(action)
if self.is_sparse:
if reward == 0:
reward = 1.0
else:
reward = 0.0
reward/=10.0
elif self.better_dense_reward:
# Better dense reward is different from default Fetch
# dense reward of l2; ours increades from 0 to 1
# as object nears goal
obj_pos = obs['observation'][3:6]
obj_goal = obs['desired_goal']
### give dense reward for distance from block to goal
goal_dist = np.linalg.norm(obj_goal - obj_pos)
goal_reward = 1. - np.tanh(10.0 * goal_dist)
reward = goal_reward
object_goal = np.array(obs['desired_goal'])
obs_to_ret = np.concatenate([obs['observation'], object_goal])
return obs_to_ret, reward, done, info
def reset(self):
obs = super().reset()
object_goal = np.array(obs['desired_goal'])
obs_to_ret = np.concatenate([obs['observation'], object_goal])
return obs_to_ret
def _reset_sim(self):
self.sim.set_state(self.initial_state)
object_xpos = np.array(FetchOneGoalPickPlaceEnv.OBJECT_START)
object_xpos[0]+=(random.random()-0.5)/10.0
object_xpos[1]+=(random.random()-0.5)/10.0
object_qpos = self.sim.data.get_joint_qpos('object0:joint')
assert object_qpos.shape == (7,)
object_qpos[:2] = object_xpos
self.sim.data.set_joint_qpos('object0:joint', object_qpos)
self.sim.forward()
gripper_offset = (np.random.random(3)-0.5)/10
gripper_offset[2] = gripper_offset[2]/2
gripper_target = self.sim.data.get_site_xpos('robot0:grip') + gripper_offset
gripper_rotation = np.array([1., 0., 1., 0.])
self.sim.data.set_mocap_pos('robot0:mocap', gripper_target)
self.sim.data.set_mocap_quat('robot0:mocap', gripper_rotation)
for _ in range(10):
self.sim.step()
return True
def _sample_goal(self):
goal = self.goal.copy()
return goal
def make_teachers(self, type, noise=None, drop=0, num_random=0):
if type == 'optimal':
return [OptimalPickPlaceAgent(self.goal, noise)]
elif type == 'pick&place':
picker = PickAgent(noise, return_to_start=True)
placer = PlaceAgent(self.goal, noise)
teachers = [picker, placer]
if drop:
teachers = [picker]
for i in range(num_random):
teachers.append(RandomAgent(self))
return teachers
else:
raise ValueError('Not a valid teacher type '+type)
register(
id='OneGoalPickPlaceEnv-v0',
entry_point='rl_with_teachers.envs:FetchOneGoalPickPlaceEnv',
max_episode_steps=100,
)
class FetchOneGoalPickPlaceSparseEnv(FetchOneGoalPickPlaceEnv):
def __init__(self, sparse=True):
super().__init__(True)
register(
id='OneGoalPickPlaceSparseEnv-v0',
entry_point='rl_with_teachers.envs:FetchOneGoalPickPlaceSparseEnv',
max_episode_steps=100,
)
class FetchOneGoalPickPlaceDenseEnv(FetchOneGoalPickPlaceEnv):
def __init__(self):
super().__init__(False)
register(
id='OneGoalPickPlaceDenseEnv-v0',
entry_point='rl_with_teachers.envs:FetchOneGoalPickPlaceDenseEnv',
max_episode_steps=100,
)
class FetchOneGoalPickPlaceBetterDenseEnv(FetchOneGoalPickPlaceEnv):
def __init__(self):
super().__init__(sparse=False, better_dense_reward=True)
register(
id='FetchOneGoalPickPlaceBetterDense-v0',
entry_point='rl_with_teachers.envs:FetchOneGoalPickPlaceBetterDenseEnv',
max_episode_steps=100,
)
class FetchFarGoalPickPlaceDenseEnv(FetchOneGoalPickPlaceEnv):
def __init__(self):
super().__init__(False, goal=np.array([1.45, 0.75, 0.425]))
register(
id='FarGoalPickPlaceDenseEnv-v0',
entry_point='rl_with_teachers.envs:FetchFarGoalPickPlaceDenseEnv',
max_episode_steps=100,
)