-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
224 lines (196 loc) · 7.23 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import torch
import torch.nn.functional as F
from torch import nn
from Core.Layers import Bottleneck
class ResNet(nn.Module):
"""Resnet module."""
def __init__(
self,
block,
layers,
num_classes: int = 1000,
base_width: int = 64,
embedding_dim = None,
last_nonlin: bool = True,
norm_feature: bool = False,
) -> None:
"""Construct a ResNet module.
:param block: Block module to use in Resnet architecture.
:param layers: List of number of blocks per layer.
:param num_classes: Number of classes in the dataset. It is used to
form linear classifier weights.
:param base_width: Base width of the blocks.
:param embedding_dim: Size of the output embedding dimension.
:param last_nonlin: Whether to apply non-linearity before output.
:param norm_feature: Whether to normalized output embeddings.
"""
self.inplanes = 64
super(ResNet, self).__init__()
self.OUTPUT_SHAPE = [embedding_dim, 1, 1]
self.is_normalized = norm_feature
self.base_width = base_width
if self.base_width // 64 > 1:
print(f"==> Using {self.base_width // 64}x wide model")
if embedding_dim is not None:
print("Using given embedding dimension = {}".format(embedding_dim))
self.embedding_dim = embedding_dim
else:
self.embedding_dim = 512 * block.expansion
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, padding=3, stride=2,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(
block, 64, layers[0], embedding_dim=64 * block.expansion
)
self.layer2 = self._make_layer(
block,
128,
layers[1],
stride=2,
embedding_dim=128 * block.expansion,
)
self.layer3 = self._make_layer(
block,
256,
layers[2],
stride=2,
embedding_dim=256 * block.expansion,
)
self.layer4 = self._make_layer(
block,
512,
layers[3],
stride=2,
nonlin=last_nonlin,
embedding_dim=self.embedding_dim,
)
self.avgpool = nn.AdaptiveAvgPool2d(1)
# self.fc = nn.Linear(512 * block.expansion, num_classes)
self.fc = nn.Conv2d(self.embedding_dim, num_classes, kernel_size=1,
stride=1, bias=False)
def _make_layer(
self,
block: nn.Module,
planes: int,
blocks: int,
embedding_dim: int,
stride: int = 1,
nonlin: bool = True
):
"""Make a layer of resnet architecture.
:param block: Block module to use in this layer.
:param planes: Number of output channels.
:param blocks: Number of blocks in this layer.
:param embedding_dim: Size of the output embedding dimension.
:param stride: Stride size.
:param nonlin: Whether to apply non-linearity before output.
:return:
"""
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
dconv = nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1,
stride=stride, bias=False)
dbn = nn.BatchNorm2d(planes * block.expansion)
if dbn is not None:
downsample = nn.Sequential(dconv, dbn)
else:
downsample = dconv
last_downsample = None
layers = []
if blocks == 1: # If this layer has only one-block
if stride != 1 or self.inplanes != embedding_dim:
dconv = nn.Conv2d(self.inplanes, embedding_dim, kernel_size=1,
stride=stride, bias=False)
dbn = nn.BatchNorm2d(embedding_dim)
if dbn is not None:
last_downsample = nn.Sequential(dconv, dbn)
else:
last_downsample = dconv
layers.append(
block(
self.inplanes,
planes,
stride,
last_downsample,
base_width=self.base_width,
nonlin=nonlin,
embedding_dim=embedding_dim,
)
)
return nn.Sequential(*layers)
else:
layers.append(
block(
self.inplanes,
planes,
stride,
downsample,
base_width=self.base_width,
)
)
self.inplanes = planes * block.expansion
for i in range(1, blocks - 1):
layers.append(
block(self.inplanes, planes,
base_width=self.base_width)
)
if self.inplanes != embedding_dim:
dconv = nn.Conv2d(self.inplanes, embedding_dim, stride=1,
kernel_size=1,
bias=False)
dbn = nn.BatchNorm2d(embedding_dim)
if dbn is not None:
last_downsample = nn.Sequential(dconv, dbn)
else:
last_downsample = dconv
layers.append(
block(
self.inplanes,
planes,
downsample=last_downsample,
base_width=self.base_width,
nonlin=nonlin,
embedding_dim=embedding_dim,
)
)
return nn.Sequential(*layers)
def forward(self, x: torch.Tensor):
"""Apply forward pass.
:param x: input to the model with shape (N, C, H, W).
:return: Tuple of (logits, embedding)
"""
x = self.conv1(x)
if self.bn1 is not None:
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
feature = self.avgpool(x)
if self.is_normalized:
feature = F.normalize(feature)
x = self.fc(feature)
x = x.view(x.size(0), -1)
return x, feature
def ResNet50(num_classes: int,
embedding_dim: int,
last_nonlin: bool = True,
**kwargs) -> nn.Module:
"""Get a ResNet50 model.
:param num_classes: Number of classes in the dataset.
:param embedding_dim: Size of the output embedding dimension.
:param last_nonlin: Whether to apply non-linearity before output.
:return: ResNet18 Model.
"""
return ResNet(
Bottleneck,
[3, 4, 6, 3],
num_classes=num_classes,
embedding_dim=embedding_dim,
last_nonlin=last_nonlin
)