-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathlearn_node.py
274 lines (226 loc) · 9.81 KB
/
learn_node.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
"""Unified interface to all dynamic graph model experiments"""
import math
import logging
import time
import sys
import random
import argparse
from tqdm import tqdm
import torch
import pandas as pd
import numpy as np
from sklearn.metrics import roc_auc_score
from module import TGAN
from graph import NeighborFinder
class LR(torch.nn.Module):
def __init__(self, dim, drop=0.3):
super().__init__()
self.fc_1 = torch.nn.Linear(dim, 80)
self.fc_2 = torch.nn.Linear(80, 10)
self.fc_3 = torch.nn.Linear(10, 1)
self.act = torch.nn.ReLU()
self.dropout = torch.nn.Dropout(p=drop, inplace=True)
def forward(self, x):
x = self.act(self.fc_1(x))
x = self.dropout(x)
x = self.act(self.fc_2(x))
x = self.dropout(x)
return self.fc_3(x).squeeze(dim=1)
random.seed(222)
np.random.seed(222)
torch.manual_seed(222)
### Argument and global variables
parser = argparse.ArgumentParser('Interface for TGAT experiments on node classification')
parser.add_argument('-d', '--data', type=str, help='data sources to use, try wikipedia or reddit', default='wikipedia')
parser.add_argument('--bs', type=int, default=30, help='batch_size')
parser.add_argument('--prefix', type=str, default='')
parser.add_argument('--n_degree', type=int, default=50, help='number of neighbors to sample')
parser.add_argument('--n_neg', type=int, default=1)
parser.add_argument('--n_head', type=int, default=2)
parser.add_argument('--n_epoch', type=int, default=15, help='number of epochs')
parser.add_argument('--n_layer', type=int, default=2)
parser.add_argument('--lr', type=float, default=3e-4)
parser.add_argument('--tune', action='store_true', help='parameters tunning mode, use train-test split on training data only.')
parser.add_argument('--drop_out', type=float, default=0.1, help='dropout probability')
parser.add_argument('--gpu', type=int, default=0, help='idx for the gpu to use')
parser.add_argument('--node_dim', type=int, default=None, help='Dimentions of the node embedding')
parser.add_argument('--time_dim', type=int, default=None, help='Dimentions of the time embedding')
parser.add_argument('--agg_method', type=str, choices=['attn', 'lstm', 'mean'], help='local aggregation method', default='attn')
parser.add_argument('--attn_mode', type=str, choices=['prod', 'map'], default='prod')
parser.add_argument('--time', type=str, choices=['time', 'pos', 'empty'], help='how to use time information', default='time')
parser.add_argument('--new_node', action='store_true', help='model new node')
parser.add_argument('--uniform', action='store_true', help='take uniform sampling from temporal neighbors')
try:
args = parser.parse_args()
except:
parser.print_help()
sys.exit(0)
BATCH_SIZE = args.bs
NUM_NEIGHBORS = args.n_degree
NUM_NEG = 1
NUM_EPOCH = args.n_epoch
NUM_HEADS = args.n_head
DROP_OUT = args.drop_out
GPU = args.gpu
UNIFORM = args.uniform
NEW_NODE = args.new_node
USE_TIME = args.time
AGG_METHOD = args.agg_method
ATTN_MODE = args.attn_mode
SEQ_LEN = NUM_NEIGHBORS
DATA = args.data
NUM_LAYER = args.n_layer
LEARNING_RATE = args.lr
NODE_LAYER = 1
NODE_DIM = args.node_dim
TIME_DIM = args.time_dim
### set up logger
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
fh = logging.FileHandler('log/{}.log'.format(str(time.time())))
fh.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
ch.setLevel(logging.WARN)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setFormatter(formatter)
ch.setFormatter(formatter)
logger.addHandler(fh)
logger.addHandler(ch)
logger.info(args)
### Load data and train val test split
g_df = pd.read_csv('./processed/ml_{}.csv'.format(DATA))
e_feat = np.load('./processed/ml_{}.npy'.format(DATA))
n_feat = np.load('./processed/ml_{}_node.npy'.format(DATA))
val_time, test_time = list(np.quantile(g_df.ts, [0.70, 0.85]))
src_l = g_df.u.values
dst_l = g_df.i.values
e_idx_l = g_df.idx.values
label_l = g_df.label.values
ts_l = g_df.ts.values
max_src_index = src_l.max()
max_idx = max(src_l.max(), dst_l.max())
total_node_set = set(np.unique(np.hstack([g_df.u.values, g_df.i.values])))
valid_train_flag = (ts_l <= test_time)
valid_val_flag = (ts_l <= test_time)
assignment = np.random.randint(0, 10, len(valid_train_flag))
valid_train_flag *= (assignment >= 2)
valid_val_flag *= (assignment < 2)
valid_test_flag = ts_l > test_time
if args.tune:
train_src_l = src_l[valid_train_flag]
train_dst_l = dst_l[valid_train_flag]
train_ts_l = ts_l[valid_train_flag]
train_e_idx_l = e_idx_l[valid_train_flag]
train_label_l = label_l[valid_train_flag]
# use the validation as test dataset
test_src_l = src_l[valid_val_flag]
test_dst_l = dst_l[valid_val_flag]
test_ts_l = ts_l[valid_val_flag]
test_e_idx_l = e_idx_l[valid_val_flag]
test_label_l = label_l[valid_val_flag]
else:
logger.info('Training use all train data')
valid_train_flag = (ts_l <= test_time)
train_src_l = src_l[valid_train_flag]
train_dst_l = dst_l[valid_train_flag]
train_ts_l = ts_l[valid_train_flag]
train_e_idx_l = e_idx_l[valid_train_flag]
train_label_l = label_l[valid_train_flag]
# use the true test dataset
test_src_l = src_l[valid_test_flag]
test_dst_l = dst_l[valid_test_flag]
test_ts_l = ts_l[valid_test_flag]
test_e_idx_l = e_idx_l[valid_test_flag]
test_label_l = label_l[valid_test_flag]
### Initialize the data structure for graph and edge sampling
adj_list = [[] for _ in range(max_idx + 1)]
for src, dst, eidx, ts in zip(train_src_l, train_dst_l, train_e_idx_l, train_ts_l):
adj_list[src].append((dst, eidx, ts))
adj_list[dst].append((src, eidx, ts))
train_ngh_finder = NeighborFinder(adj_list, uniform=UNIFORM)
# full graph with all the data for the test and validation purpose
full_adj_list = [[] for _ in range(max_idx + 1)]
for src, dst, eidx, ts in zip(src_l, dst_l, e_idx_l, ts_l):
full_adj_list[src].append((dst, eidx, ts))
full_adj_list[dst].append((src, eidx, ts))
full_ngh_finder = NeighborFinder(full_adj_list, uniform=UNIFORM)
### Model initialize
device = torch.device('cuda:{}'.format(GPU))
tgan = TGAN(train_ngh_finder, n_feat, e_feat,
num_layers=NUM_LAYER, use_time=USE_TIME, agg_method=AGG_METHOD, attn_mode=ATTN_MODE,
seq_len=SEQ_LEN, n_head=NUM_HEADS, drop_out=DROP_OUT, node_dim=NODE_DIM, time_dim=TIME_DIM)
# optimizer = torch.optim.Adam(tgan.parameters(), lr=LEARNING_RATE)
# criterion = torch.nn.BCELoss()
tgan = tgan.to(device)
num_instance = len(train_src_l)
num_batch = math.ceil(num_instance / BATCH_SIZE)
logger.debug('num of training instances: {}'.format(num_instance))
logger.debug('num of batches per epoch: {}'.format(num_batch))
idx_list = np.arange(num_instance)
np.random.shuffle(idx_list)
logger.info('loading saved TGAN model')
model_path = f'./saved_models/{args.prefix}-{args.agg_method}-{args.attn_mode}-{DATA}.pth'
tgan.load_state_dict(torch.load(model_path))
tgan.eval()
logger.info('TGAN models loaded')
logger.info('Start training node classification task')
lr_model = LR(n_feat.shape[1])
lr_optimizer = torch.optim.Adam(lr_model.parameters(), lr=args.lr)
lr_model = lr_model.to(device)
tgan.ngh_finder = full_ngh_finder
idx_list = np.arange(len(train_src_l))
lr_criterion = torch.nn.BCELoss()
lr_criterion_eval = torch.nn.BCELoss()
def eval_epoch(src_l, dst_l, ts_l, label_l, batch_size, lr_model, tgan, num_layer=NODE_LAYER):
pred_prob = np.zeros(len(src_l))
loss = 0
num_instance = len(src_l)
num_batch = math.ceil(num_instance / batch_size)
with torch.no_grad():
lr_model.eval()
tgan.eval()
for k in range(num_batch):
s_idx = k * batch_size
e_idx = min(num_instance - 1, s_idx + batch_size)
src_l_cut = src_l[s_idx:e_idx]
dst_l_cut = dst_l[s_idx:e_idx]
ts_l_cut = ts_l[s_idx:e_idx]
label_l_cut = label_l[s_idx:e_idx]
size = len(src_l_cut)
src_embed = tgan.tem_conv(src_l_cut, ts_l_cut, num_layer)
src_label = torch.from_numpy(label_l_cut).float().to(device)
lr_prob = lr_model(src_embed).sigmoid()
loss += lr_criterion_eval(lr_prob, src_label).item()
pred_prob[s_idx:e_idx] = lr_prob.cpu().numpy()
auc_roc = roc_auc_score(label_l, pred_prob)
return auc_roc, loss / num_instance
for epoch in tqdm(range(args.n_epoch)):
lr_pred_prob = np.zeros(len(train_src_l))
np.random.shuffle(idx_list)
tgan = tgan.eval()
lr_model = lr_model.train()
#num_batch
for k in range(num_batch):
s_idx = k * BATCH_SIZE
e_idx = min(num_instance - 1, s_idx + BATCH_SIZE)
src_l_cut = train_src_l[s_idx:e_idx]
dst_l_cut = train_dst_l[s_idx:e_idx]
ts_l_cut = train_ts_l[s_idx:e_idx]
label_l_cut = train_label_l[s_idx:e_idx]
size = len(src_l_cut)
lr_optimizer.zero_grad()
with torch.no_grad():
src_embed = tgan.tem_conv(src_l_cut, ts_l_cut, NODE_LAYER)
src_label = torch.from_numpy(label_l_cut).float().to(device)
lr_prob = lr_model(src_embed).sigmoid()
lr_loss = lr_criterion(lr_prob, src_label)
lr_loss.backward()
lr_optimizer.step()
train_auc, train_loss = eval_epoch(train_src_l, train_dst_l, train_ts_l, train_label_l, BATCH_SIZE, lr_model, tgan)
test_auc, test_loss = eval_epoch(test_src_l, test_dst_l, test_ts_l, test_label_l, BATCH_SIZE, lr_model, tgan)
#torch.save(lr_model.state_dict(), './saved_models/edge_{}_wkiki_node_class.pth'.format(DATA))
logger.info(f'train auc: {train_auc}, test auc: {test_auc}')
test_auc, test_loss = eval_epoch(test_src_l, test_dst_l, test_ts_l, test_label_l, BATCH_SIZE, lr_model, tgan)
#torch.save(lr_model.state_dict(), './saved_models/edge_{}_wkiki_node_class.pth'.format(DATA))
logger.info(f'test auc: {test_auc}')