-
Notifications
You must be signed in to change notification settings - Fork 118
/
Copy pathdemo_client.py
240 lines (193 loc) · 8.14 KB
/
demo_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import argparse
import base64
import glob
import logging
import multiprocessing
import os
import shutil
import time
from distutils import util
from functools import partial
from itertools import chain, islice, cycle
import msgpack
import numpy as np
import requests
import ujson
dir_path = os.path.dirname(os.path.realpath(__file__))
test_cat = os.path.join(dir_path, 'images')
session = requests.Session()
session.trust_env = False
logging.basicConfig(
level='INFO',
format='%(asctime)s %(levelname)s - %(message)s',
datefmt='[%H:%M:%S]',
)
def to_chunks(iterable, size=10):
iterator = iter(iterable)
for first in iterator:
yield chain([first], islice(iterator, size - 1))
def file2base64(path):
with open(path, mode='rb') as fl:
encoded = base64.b64encode(fl.read()).decode('ascii')
return encoded
def save_crop(data, name):
img = base64.b64decode(data)
with open(name, mode="wb") as fl:
fl.write(img)
fl.close()
def to_bool(input):
try:
return bool(util.strtobool(input))
except:
return False
class IFRClient:
def __init__(self, host: str = 'http://localhost', port: int = '18081'):
self.server = f'{host}:{port}'
self.sess = requests.Session()
def server_info(self, server: str = None, show=True):
if server is None:
server = self.server
info_uri = f'{server}/info'
info = self.sess.get(info_uri).json()
if show:
server_uri = self.server
backend_name = info['models']['inference_backend']
det_name = info['models']['det_name']
rec_name = info['models']['rec_name']
rec_batch_size = info['models']['rec_batch_size']
det_batch_size = info['models']['det_batch_size']
det_max_size = info['models']['max_size']
print(f'Server: {server_uri}\n'
f' Inference backend: {backend_name}\n'
f' Detection model: {det_name}\n'
f' Detection image size: {det_max_size}\n'
f' Detection batch size: {det_batch_size}\n'
f' Recognition model: {rec_name}\n'
f' Recognition batch size: {rec_batch_size}')
return info
def extract(self, data: list,
mode: str = 'paths',
server: str = None,
threshold: float = 0.6,
extract_embedding=True,
return_face_data=False,
return_landmarks=False,
embed_only=False,
limit_faces=0,
use_msgpack=True):
if server is None:
server = self.server
extract_uri = f'{server}/extract'
if mode == 'data':
images = dict(data=data)
elif mode == 'paths':
images = dict(urls=data)
req = dict(images=images,
threshold=threshold,
extract_ga=False,
extract_embedding=extract_embedding,
return_face_data=return_face_data,
return_landmarks=return_landmarks,
embed_only=embed_only, # If set to true API expects each image to be 112x112 face crop
limit_faces=limit_faces, # Limit maximum number of processed faces, 0 = no limit
use_rotation=True,
msgpack=use_msgpack,
)
resp = self.sess.post(extract_uri, json=req, timeout=120)
if resp.headers['content-type'] == 'application/x-msgpack':
content = msgpack.loads(resp.content)
else:
content = ujson.loads(resp.content)
images = content.get('data')
for im in images:
status = im.get('status')
if status != 'ok':
print(content.get('traceback'))
break
faces = im.get('faces', [])
for i, face in enumerate(faces):
norm = face.get('norm', 0)
prob = face.get('prob')
size = face.get('size')
facedata = face.get('facedata')
if facedata:
if size > 20 and norm > 14:
save_crop(facedata, f'crops/{i}_{size}_{norm:2.0f}_{prob}.jpg')
return content
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='defa')
parser.add_argument('-p', '--port', default=18081, type=int, help='Port')
parser.add_argument('-u', '--uri', default='http://localhost', type=str, help='Server hostname or ip with protocol')
parser.add_argument('-i', '--iters', default=10, type=int, help='Number of iterations')
parser.add_argument('-t', '--threads', default=12, type=int, help='Number of threads')
parser.add_argument('-b', '--batch', default=64, type=int, help='Batch size')
parser.add_argument('-d', '--dir', default=None, type=str, help='Path to directory with images')
parser.add_argument('-n', '--num_files', default=10000, type=int, help='Number of files per test')
parser.add_argument('-lf', '--limit_faces', default=0, type=int, help='Number of files per test')
parser.add_argument('--embed', default='True', type=str, help='Extract embeddings, otherwise run detection only')
parser.add_argument('--embed_only', default='False', type=str,
help='Omit detection step. Expects already cropped 112x112 images')
args = parser.parse_args()
allowed_ext = '.jpeg .jpg .bmp .png .webp .tiff'.split()
client = IFRClient(host=args.uri, port=args.port)
if os.path.exists('crops'):
shutil.rmtree('crops')
os.mkdir('crops')
print('---')
client.server_info(show=True)
print('Benchmark configs:')
print(f" Embed detected faces: {args.embed}")
print(f" Run in embed only mode: {args.embed_only}")
print(f' Request batch size: {args.batch}')
print(f" Min. num. of files per iter: {args.num_files}")
print(f" Number of iterations: {args.iters}")
print(f" Number of threads: {args.threads}")
print('---')
mode = 'paths'
if args.dir is None:
# Test single face per image
if to_bool(args.embed_only):
files = ['test_images/TH.png']
else:
files = ['test_images/Stallone.jpg']
print(f'No data directory provided. Using `{files[0]}` for testing.')
else:
files = glob.glob(os.path.join(args.dir, '*/*.*'))
files = [file for file in files if os.path.splitext(file)[1].lower() in allowed_ext]
if args.dir.startswith('src/api_trt/'):
files = [file.replace('src/api_trt/', '') for file in files]
else:
print('Images will be sent in base64 encoding')
mode = 'data'
files = [file2base64(file) for file in files]
print(f"Total files detected: {len(files)}")
total = len(files)
if total < args.num_files:
print(f'Number of files is less than {args.num_files}. Files will be cycled.')
total = args.num_files
files = islice(cycle(files), total)
im_batches = to_chunks(files, args.batch)
im_batches = [list(chunk) for chunk in im_batches]
_part_extract_vecs = partial(client.extract, extract_embedding=to_bool(args.embed),
embed_only=to_bool(args.embed_only), mode=mode,
limit_faces=args.limit_faces)
pool = multiprocessing.Pool(args.threads)
speeds = []
print('\nRunning benchmark...')
for i in range(0, args.iters):
t0 = time.time()
r = pool.map(_part_extract_vecs, im_batches)
t1 = time.time()
took = t1 - t0
speed = total / took
speeds.append(speed)
print(f" Iter {i + 1}/{args.iters} Took: {took:.3f} s. ({speed:.3f} im/sec)")
pool.close()
mean = np.mean(speeds)
median = np.median(speeds)
print(f'\nThroughput:\n'
f' mean: {mean:.3f} im/sec\n'
f' median: {median:.3f} im/sec\n'
f' min: {np.min(speeds):.3f} im/sec\n'
f' max: {np.max(speeds):.3f} im/sec\n'
)