-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathFID.py
83 lines (68 loc) · 2.69 KB
/
FID.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
import matplotlib.pyplot as plt
from skimage.transform import resize
from torchvision import transforms
from scipy import linalg
import warnings
data = torch.load('data/test.pt')
numSamples = 57
EPOCHS = 50
loss_func = nn.L1Loss()
class AutoEncoder(nn.Module):
def __init__(self):
super(AutoEncoder, self).__init__()
self.encoder = nn.Sequential(nn.Linear(4096,128), nn.ReLU(True), nn.Dropout())
self.decoder = nn.Sequential(nn.Linear(128,4096))
def forward(self,x):
x = self.encoder(x)
x = self.decoder(x)
return x
ae = AutoEncoder().cuda()
optimizer = torch.optim.Adam(ae.parameters(), lr=1e-3)
data = data.reshape(data.shape[0], -1)[:numSamples]
losses = []
for epoch in range(EPOCHS):
x = torch.autograd.Variable(data[torch.randperm(numSamples)]).cuda()
optimizer.zero_grad()
pred = ae(x)
loss = loss_func(pred, x)
losses.append(loss.cpu().data.item())
loss.backward()
optimizer.step()
plt.plot(losses)
ae.eval()
def FID(mu1, mu2, sigma1, sigma2):
eps=1e-30
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, "Training and test mean vectors have different lengths"
assert sigma1.shape == sigma2.shape, "Training and test covariances have different dimensions"
diff = mu1 - mu2
# product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = "fid calculation produces singular product; adding %s to diagonal of cov estimates" % eps
warnings.warn(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError("Imaginary component {}".format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean
def calcFID(data):
data = data.reshape(data.shape[0], -1)
features = ae.encoder(data.cuda()).detach().cpu().numpy()
mean, covar = np.mean(features, 0), np.cov(features, rowvar=False)
return FID(mean, base_mean, covar, base_covar)
base_features = ae.encoder(Variable(data).cuda()).detach().cpu().numpy()
base_mean, base_covar = np.mean(base_features, 0), np.cov(base_features, rowvar=False)