-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsuper_and.py
232 lines (191 loc) · 9.53 KB
/
super_and.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
'''
Impletment for super-AND
'''
import os
import sys
import argparse
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import torch.backends.cudnn as cudnn
import time
from datetime import datetime
import numpy as np
import datasets
import models
from lib.non_parametric_classifier import NonParametricClassifier
from lib.ans_discovery import ANsDiscovery
from lib.criterion import Criterion_SAND, UELoss
from lib.protocols import kNN
from lib.utils import AverageMeter
from lib.normalize import Normalize
from lib.LinearAverage import LinearAverage
def config():
global args
parser = argparse.ArgumentParser(description='config for super-AND')
parser.add_argument('--dataset', default='cifar10', type=str, help='available dataset: cifar10, cifar100 (dafault: cifar10)')
parser.add_argument('--network', default='resnet18', type=str, help='available network: resnet18, resnet101 (default: resnet18)')
parser.add_argument('--low_dim', default=128, type=int, help='feature dimension')
parser.add_argument('--npc_t', default=0.1, type=float, metavar='T', help='temperature parameter for softmax')
parser.add_argument('--npc_m', default=0.5, type=float, help='momentum for non-parametric updates')
parser.add_argument('--ANs_select_rate', default=0.25, type=float, help='ANs select rate at each round')
parser.add_argument('--ANs_size', default=1, type=int, help='ANs size discarding the anchor')
parser.add_argument('--lr', default=0.03, type=float, metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum')
parser.add_argument('--weight_decay', '--wd', default=5e-4, type=float, metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--epochs', default=200, type=int, help='max epoch per round. (default: 200)')
parser.add_argument('--rounds', default=5, type=int, help='max iteration, including initialisation one. ''(default: 5)')
parser.add_argument('--batch_t', default=0.1, type=float, metavar='T', help='temperature parameter for softmax')
parser.add_argument('--batch_m', default=1, type=float, metavar='N', help='m for negative sum')
parser.add_argument('--batch_size', default=128, type=int, metavar='B', help='training batch size')
parser.add_argument('--model_dir', default='checkpoint/', type=str, help='model save path')
parser.add_argument('--resume', '-r', default='', type=str, help='resume from checkpoint')
parser.add_argument('--test_only', action='store_true', help='test only')
parser.add_argument('--seed', default=1567010775, type=int, help='random seed')
args = parser.parse_args()
return args
def preprocess(args):
if args.dataset == "cifar10":
mean = (0.4914, 0.4822, 0.4465)
std = (0.2023, 0.1994, 0.2010)
elif args.dataset == 'cifar100':
mean = (0.5071, 0.4866, 0.4409)
std = (0.2009, 0.1984, 0.2023)
transform_train = transforms.Compose([
transforms.RandomResizedCrop(size=32, scale=(0.2,1.)),
transforms.ColorJitter(0.4, 0.4, 0.4, 0.4),
transforms.RandomGrayscale(p=0.2),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std),
])
transform_test = transforms.Compose([
transforms.Resize(32),
transforms.CenterCrop(32),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std),
])
if args.dataset == 'cifar10':
trainset = datasets.CIFAR10_(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=2, drop_last=True)
testset = datasets.CIFAR10_(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2, drop_last=True)
elif args.dataset == 'cifar100':
trainset = datasets.CIFAR100_(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=2, drop_last=True)
testset = datasets.CIFAR100_(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2, drop_last=True)
return trainset, trainloader, testset, testloader
def adjust_learning_rate(optimizer, epoch):
lr = args.lr
if epoch >= 80:
lr = args.lr * (0.1 ** ((epoch - 80) // 40))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def train(round, epoch, net, trainloader, optimizer, npc, criterion, criterion2, ANs_discovery, device):
# tracking variables
train_loss = AverageMeter()
i_loss = AverageMeter()
e_loss = AverageMeter()
data_time = AverageMeter()
batch_time = AverageMeter()
c_loss = AverageMeter()
# switch the model to train mode
net.train()
# adjust learning rate
adjust_learning_rate(optimizer, epoch)
optimizer.zero_grad()
for batch_idx, (inputs1, inputs2, _, indexes) in enumerate(trainloader):
inputs1, inputs2, indexes = inputs1.to(device), inputs2.to(device), indexes.to(device)
inputs = torch.cat((inputs1,inputs2), 0)
features = net(inputs) # (256, 128)
outputs = npc(features, indexes) # (256, 50000)
# AND + Augmentation Loss
loss_i = criterion(outputs, indexes, ANs_discovery)
# UELoss
val = 0.2 * (epoch // 80)
loss_e = 0
if val > 0:
outputs_e = outputs.clone()
for i in range(0, len(indexes)):
outputs_e[i, indexes[i]] = -10
outputs_e[i + inputs.shape[0] // 2, indexes[i]] = -10
loss_e = criterion2(outputs_e) / inputs.size(0)
e_loss.update(loss_e.item(), inputs.size(0))
loss = loss_i + val*loss_e
loss.backward()
train_loss.update(loss.item(), inputs.size(0))
i_loss.update(loss_i.item(), inputs.size(0))
optimizer.step()
optimizer.zero_grad()
if batch_idx % 80 == 0:
print('Round: {round} Epoch: [{epoch}][{elps_iters}/{tot_iters}] '
'Train loss: {train_loss.val:.4f} ({train_loss.avg:.4f}) '
'I Loss: {i_loss.val:.4f} ({i_loss.avg:.4f}) '
'E Loss: {e_loss.val:.4f} ({e_loss.avg:.4f}) '.format(
round=round, epoch=epoch, elps_iters=batch_idx,
tot_iters=len(trainloader), train_loss=train_loss, i_loss=i_loss, e_loss = e_loss))
def main():
args = config()
# fix random seeds
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
args.device = 'cuda' if torch.cuda.is_available() else 'cpu'
trainset, trainloader, testset, testloader = preprocess(args)
ntrain = len(trainset)
cheat_labels = torch.tensor(trainset.targets).long().to(args.device)
net = models.__dict__['ResNet18withSobel'](low_dim=args.low_dim)
npc = NonParametricClassifier(args.low_dim, ntrain, args.npc_t, args.npc_m)
ANs_discovery = ANsDiscovery(ntrain, args.ANs_select_rate, args.ANs_size, args.device)
criterion = Criterion_SAND(args.batch_m, args.batch_t, args.batch_size, args.device)
criterion2 = UELoss()
optimizer = torch.optim.SGD(net.parameters(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay, nesterov=True)
if args.device == 'cuda':
net = torch.nn.DataParallel(net, device_ids=range(torch.cuda.device_count()))
cudnn.benchmark = True
net.to(args.device)
npc.to(args.device)
ANs_discovery.to(args.device)
criterion.to(args.device)
criterion2.to(args.device)
if args.test_only or len(args.resume) > 0:
model_path = args.model_dir + args.resume
print('==> Resuming from checkpoint..')
assert os.path.isdir(args.model_dir), 'Error: no checkpoint directory found!'
checkpoint = torch.load(model_path)
net.load_state_dict(checkpoint['net'])
npc.load_state_dict(checkpoint['npc'])
ANs_discovery = checkpoint['ANs_discovery']
best_acc = checkpoint['acc']
start_round = checkpoint['round']
start_epoch = checkpoint['epoch']
if args.test_only:
acc = kNN(net, npc, trainloader, testloader, K=200, sigma=0.1, recompute_memory=False, device=args.device)
print("accuracy: %.2f\n" % (acc*100))
sys.exit(0)
best_acc = 0
for r in range(args.rounds):
if r > 0:
ANs_discovery.update(r, npc, cheat_labels)
for epoch in range(args.epochs):
train(r, epoch, net, trainloader, optimizer, npc, criterion, criterion2, ANs_discovery, args.device)
acc = kNN(net, npc, trainloader, testloader, K=200, sigma=0.1, recompute_memory=False, device=args.device)
print("accuracy: %.2f\n" % (acc*100))
if acc > best_acc:
best_acc = acc
print("best accuracy: %.2f\n" % (best_acc*100))
state = {
'net': net.state_dict(),
'npc': npc.state_dict(),
'ANs_discovery' : ANs_discovery.state_dict(),
'acc': acc,
'round': r,
'epoch': epoch
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/ckpt_embed.t7')
if __name__ == "__main__":
main()