-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeform_conv.py
67 lines (53 loc) · 2.3 KB
/
deform_conv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import math
import torch
import torch.nn as nn
from torch.nn.modules.utils import _pair
from mmcv.ops import modulated_deform_conv2d
# Deformable convolution layer from https://arxiv.org/abs/1811.11168
class DCN_layer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1,
groups=1, deformable_groups=1, bias=True, extra_offset_mask=True):
super(DCN_layer, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = _pair(kernel_size)
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
self.deformable_groups = deformable_groups
self.with_bias = bias
self.weight = nn.Parameter(
torch.Tensor(out_channels, in_channels // groups, *self.kernel_size))
self.extra_offset_mask = extra_offset_mask
self.conv_offset_mask = nn.Conv2d(
self.in_channels * 2,
self.deformable_groups * 3 * self.kernel_size[0] * self.kernel_size[1],
kernel_size=self.kernel_size, stride=_pair(self.stride), padding=_pair(self.padding),
bias=True
)
if bias:
self.bias = nn.Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.init_offset()
self.reset_parameters()
def reset_parameters(self):
n = self.in_channels
for k in self.kernel_size:
n *= k
stdv = 1. / math.sqrt(n)
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.zero_()
def init_offset(self):
self.conv_offset_mask.weight.data.zero_()
self.conv_offset_mask.bias.data.zero_()
def forward(self, input_feat, inter):
feat_degradation = torch.cat([input_feat, inter], dim=1)
out = self.conv_offset_mask(feat_degradation)
o1, o2, mask = torch.chunk(out, 3, dim=1)
offset = torch.cat((o1, o2), dim=1)
mask = torch.sigmoid(mask)
return modulated_deform_conv2d(input_feat.contiguous(), offset, mask, self.weight, self.bias, self.stride,
self.padding, self.dilation, self.groups, self.deformable_groups)