-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
106 lines (82 loc) · 3.86 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import os
import argparse
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
# my import
from dataset_all import TrainLabeled, TrainUnlabeled, ValLabeled
from UIE14_agg4 import *
# from UIE2 import *
# from Cross.dehazeformer import *
# from model import *
# from utils import *
# from model import *s
from trainer import Trainer
def main(gpu, args):
args.local_rank = gpu
# random seed
setup_seed(2022)
# load data
train_folder = args.data_dir
# 加载带标签的训练数据集
paired_dataset = TrainLabeled(dataroot=train_folder, phase='labeled', finesize=args.crop_size)
# 加载无标签的训练数据集
unpaired_dataset = TrainUnlabeled(dataroot=train_folder, phase='unlabeled', finesize=args.crop_size)
# 加载验证数据集
val_dataset = ValLabeled(dataroot=train_folder, phase='val', finesize=args.crop_size)
paired_sampler = None
unpaired_sampler = None
val_sampler = None
# 创建用于加载带标签的训练数据集的数据加载器
paired_loader = DataLoader(paired_dataset, batch_size=args.train_batchsize, sampler=paired_sampler)
# 创建用于加载无标签的训练数据集的数据加载器
unpaired_loader = DataLoader(unpaired_dataset, batch_size=args.train_batchsize, sampler=unpaired_sampler)
# 创建用于加载验证数据集的数据加载器
val_loader = DataLoader(val_dataset, batch_size=args.val_batchsize, sampler=val_sampler)
print('there are total %s batches for train' % (len(paired_loader)))
print('there are total %s batches for val' % (len(val_loader)))
# 创建模型
# net = AIMnet()
# net = UIE_org()
# net = UIE_Third()
# net = dehazeformer_s()
net = UIE_Second()
# ema_net = AIMnet()
# ema_net = UIE_org()
# ema_net = UIE_Third()
# ema_net = dehazeformer_s()
ema_net = UIE_Second()
ema_net = create_emamodel(ema_net)
print('student model params: %d' % count_parameters(net))
# tensorboard
writer = SummaryWriter(log_dir=args.log_dir)
# 创建训练器
trainer = Trainer(model=net, tmodel=ema_net, args=args, supervised_loader=paired_loader,
unsupervised_loader=unpaired_loader,
val_loader=val_loader, iter_per_epoch=len(unpaired_loader), writer=writer)
# 开始训练
trainer.train()
# 关闭tensorboard写入器
writer.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Training')
# 添加命令行参数
parser.add_argument('-g', '--gpus', default=1, type=int, metavar='N')
parser.add_argument('--num_epochs', default=300, type=int)
parser.add_argument('--train_batchsize', default=3, type=int, help='train batchsize')
parser.add_argument('--val_batchsize', default=1, type=int, help='val batchsize')
parser.add_argument('--crop_size', default=256, type=int, help='crop size')
parser.add_argument('--resume', default='False', type=str, help='if resume')
parser.add_argument('--resume_path', default='./model/ckpt/best_in_NR.pth', type=str, help='if resume')
parser.add_argument('--use_pretrain', default='False', type=str, help='use pretained model')
parser.add_argument('--pretrained_path', default='./model/ckpt/best_in_NR.pth', type=str, help='if pretrained')
parser.add_argument('--data_dir', default='./data/UIEBD2', type=str, help='data root path')
parser.add_argument('--save_path', default='./model/ckpt/', type=str)
parser.add_argument('--log_dir', default='./model/log', type=str)
parser.add_argument('--lr', default='2e-4', type=float)
parser.add_argument('--early_stop_epoch', default=200, type=int)
args = parser.parse_args()
# 如果保存路径不存在,则创建
if not os.path.isdir(args.save_path):
os.makedirs(args.save_path)
# 调用主函数进行训练
main(-1, args)