By the convolution theorem, the cross-correlation of two time signals,

$$
(A \star B)_t = \int A(t' + t)B(t')dt', \tag{1}
$$

is a simple multiplication in Fourier space,

$$
\mathcal{F}[A \star B] = \hat{A}_{-\omega} \hat{B}_{\omega}.
$$
 (2)

Assume that $A(t)$ and $B(t)$ are real signals. The Fourier transform must satisfy

$$
\hat{A}_{-\omega} = \hat{A}^*_{\omega},\tag{3}
$$

and time-symmetrization,

$$
A(t) \to \frac{A(t) + A(-t)}{2},\tag{4}
$$

is effectively like replacing the Fourier transform with its real part,

$$
\hat{A}_{\omega} \to \text{Re}\hat{A}_{\omega} = \frac{\hat{A}_{\omega} + \hat{A}_{-\omega}}{2}.
$$
\n(5)

A relevant physical observable is the dynamical correlation,

$$
C_{\omega} = \left\langle \hat{A}_{-\omega} \hat{B}_{\omega} \right\rangle, \tag{6}
$$

with brackets denoting an equilibrium average.

Under symmetrization of the time signals $A(t)$ and $B(t)$, the cross correlation becomes:

$$
C_{\omega} \to \tilde{C}_{\omega} = \frac{1}{4} \left\langle (\hat{A}_{\omega} + \hat{A}_{-\omega}) (\hat{B}_{\omega} + \hat{B}_{-\omega}) \right\rangle.
$$
 (7)

Because of the equilibrium average, the result must be time-translation invariant. In particular, one may average \tilde{C}_{ω} over all possible time shifts: $A(t) \rightarrow$ $A(t+\phi)$ and $B(t) \to B(t+\phi)$. In Fourier space, the time shift introduces a complex phase $A_{\omega} \to e^{-i\omega\phi} A_{\omega}$, and equivalently $A_{-\omega} \to e^{+i\omega\phi} A_{-\omega}$. For each mode $ω$, it is sufficient to average over a full periodic cycle, $φ ∈ [0, 2π/ω]$. Averaging (7) in this way, the result is,

$$
\tilde{C}_{\omega} = \frac{1}{8\pi/\omega} \int_0^{2\pi/\omega} d\phi \left\langle (e^{-i\omega\phi} \hat{A}_{\omega} + e^{+i\omega\phi} \hat{A}_{-\omega}) (e^{-i\omega\phi} \hat{B}_{\omega} + e^{+i\omega\phi} \hat{B}_{-\omega}) \right\rangle
$$

\n
$$
= \frac{1}{4} \left\langle \hat{A}_{\omega} \hat{B}_{-\omega} + \hat{A}_{-\omega} \hat{B}_{\omega} \right\rangle + \frac{1}{8\pi/\omega} \int_0^{2\pi/\omega} d\phi \left\langle e^{-2i\omega\phi} \hat{A}_{\omega} \hat{B}_{\omega} + e^{+2i\omega\phi} \hat{A}_{-\omega} \hat{B}_{-\omega} \right\rangle
$$
\n(8)

The two remaining integrals over ϕ evaluate exactly to zero, leaving

$$
\tilde{C}_{\omega} = \frac{1}{2} \text{Re} \left\langle \hat{A}_{\omega} \hat{B}_{-\omega} \right\rangle = \frac{1}{2} \text{Re} C_{\omega}.
$$
\n(9)

.

To summarize: We may sample the real part of the dynamical correlation C_{ω} as

$$
\operatorname{Re} C_{\omega} = 2\tilde{C}_{\omega},\tag{10}
$$

where \tilde{C}_{ω} denotes the circular cross correlation of the time-symmetrized signals as defined in Eqs. (4) and (7). It makes sense that \tilde{C}_{ω} cannot capture the imaginary part of C_{ω} – the effect of time-symmetrization is to enforce $\tilde{C}_{\omega} = \tilde{C}_{-\omega}$, such that \tilde{C}_{ω} can only be real.

In the special case that $A(t) = B(t)$, the desired time correlation C_{ω} = $\langle \hat{A}_{-\omega} \hat{A}_{\omega} \rangle = C_{-\omega}$ is already real, and we obtain the exact result,

$$
C_{\omega} = 2\tilde{C}_{\omega}.\tag{11}
$$

The result depends crucially on the presence of an equilibrium average, allowing to average over all possible time-translations.

In Sunny applications, we are ultimately interested in expectations of physical observables, which must be real. For example, $\langle \hat{S}_x \hat{S}_y + \hat{S}_y \hat{S}_x \rangle$ is a good observable, but $\langle \hat{S}_x \hat{S}_y \rangle$ is not. Therefore the restriction to the real part of the dynamical correlation C_{ω} does not seem to impose any limitations.

Numerically, we will have observered the time data $A(t)$ and $B(t)$ only over some finite interval, say $t \in [0, T]$ in multiples of a timestep Δt . In principle, the average over $N/\Delta t$ possible timeshifts ϕ could then be performed explicitly, possibly yielding better statistics.