forked from Davis-DMajor/Gibberish-HackDavis-2019
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathObject_detection_webcam.py
72 lines (60 loc) · 2.77 KB
/
Object_detection_webcam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Import packages
import os
import numpy as np
import tensorflow as tf
import math
import time
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
MODEL_NAME = 'inference_graph/saved_model_0207/'
CWD_PATH = os.getcwd()
PATH_TO_CKPT = os.path.join(CWD_PATH, MODEL_NAME, 'frozen_inference_graph.pb')
PATH_TO_LABELS = os.path.join(CWD_PATH, 'Output Files/labelmap.pbtxt')
NUM_CLASSES = 1
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
def arm_detect(frame, prev_time, prev_avg_cood, speed):
current_avg_cood = None
frame_expanded = np.expand_dims(frame, axis=0)
# Perform the actual detection by running the model with the image as input
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: frame_expanded})
if scores[0][0] > 0.7:
height, width = frame.shape[:2]
ymin = int(boxes[0][0][0] * height)
xmin = int(boxes[0][0][1] * width)
ymax = int(boxes[0][0][2] * height)
xmax = int(boxes[0][0][3] * width)
current_avg_cood = [(xmin + xmax) / 2, (ymin + ymax) / 2]
delta = math.sqrt(
(current_avg_cood[0] - prev_avg_cood[0]) ** 2 + (current_avg_cood[1] - prev_avg_cood[1]) ** 2) * 2.54 / 96
speed = delta / (time.clock() - prev_time)
else:
current_avg_cood = prev_avg_cood
# Draw the results of the detection (aka 'visulaize the results')
vis_util.visualize_boxes_and_labels_on_image_array(
frame,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8,
min_score_thresh=0.60)
return frame, time.clock(), current_avg_cood, speed