-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset.py
214 lines (179 loc) · 8.44 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
import pickle
import random
import json
import pandas as pd
import torch
from torch.utils.data import Dataset, Subset
from PIL import Image
import torchvision.transforms as transforms
import numpy as np
class REFUGE(Dataset):
def __init__(self, data_path, transform=None, image_size=512, mode='Training'):
self.data_path = data_path
self.subfolders = [os.path.join(dp, f) for dp, dn, fn in os.walk(os.path.join(data_path, mode + '-400')) for f in dn]
self.mode = mode
self.img_size = image_size
self.transform = transform
def __len__(self):
return len(self.subfolders)
def majority_vote(self, masks):
_, H, W = masks.size()
final_mask = torch.zeros((1, H, W), dtype=torch.float32, device=masks.device)
for h in range(H):
for w in range(W):
votes = torch.sum(masks[:, h, w])
if votes > masks.size(0) // 2:
final_mask[0, h, w] = 1
return final_mask
def load_disc_info(self, xlsx_path):
xl = pd.ExcelFile(xlsx_path)
df = xl.parse(xl.sheet_names[0])
disc_info_json = df.iloc[2, 2] # Rows and columns are zero-indexed
disc_info = json.loads(disc_info_json)
return disc_info
def crop_to_disc(self, image, disc_info, output_size=(384, 384)):
"""
Crop the image around the disc center to the specified output size.
"""
center_x, center_y = disc_info['centerX'], disc_info['centerY']
width, height = output_size
left = max(center_x - width // 2, 0)
top = max(center_y - height // 2, 0)
right = min(center_x + width // 2, image.width)
bottom = min(center_y + height // 2, image.height)
image = image.crop((left, top, right, bottom))
return image
def __getitem__(self, index):
"""Get the images"""
subfolder = self.subfolders[index]
name = os.path.basename(subfolder)
img_path = os.path.join(subfolder, name + '.jpg')
xlsx_path = os.path.join(subfolder, name + '.xlsx')
disc_info = self.load_disc_info(xlsx_path)
multi_rater_cup_path = [os.path.join(subfolder, name + '_seg_cup_' + str(i) + '.png') for i in range(1, 8)]
multi_rater_disc_path = [os.path.join(subfolder, name + '_seg_disc_' + str(i) + '.png') for i in range(1, 8)]
# raw image and raters images
img = Image.open(img_path).convert('RGB')
img = self.crop_to_disc(img, disc_info, output_size=(384, 384))
multi_rater_cup = [self.crop_to_disc(Image.open(path).convert('L'), disc_info, output_size=(384, 384)) for path in multi_rater_cup_path]
multi_rater_disc = [self.crop_to_disc(Image.open(path).convert('L'), disc_info, output_size=(384, 384)) for path in multi_rater_disc_path]
if self.transform:
state = torch.get_rng_state()
img = self.transform(img)
multi_rater_cup = [torch.as_tensor((self.transform(single_rater) > 0.5).float(), dtype=torch.float32) for single_rater in multi_rater_cup]
multi_rater_cup = torch.stack(multi_rater_cup, dim=0)
random_cup_label = random.choice(multi_rater_cup)
multi_rater_cup = torch.squeeze(multi_rater_cup, dim=1)
majorityvote_cup_label = self.majority_vote(multi_rater_cup)
multi_rater_disc = [torch.as_tensor((self.transform(single_rater) > 0.5).float(), dtype=torch.float32) for single_rater in multi_rater_disc]
multi_rater_disc = torch.stack(multi_rater_disc, dim=0)
random_disc_label = random.choice(multi_rater_disc)
multi_rater_disc = torch.squeeze(multi_rater_disc, dim=1)
majorityvote_disc_label = self.majority_vote(multi_rater_disc)
torch.set_rng_state(state)
image_meta_dict = {'filename_or_obj': name}
return {
'image': img,
'random_cup_label': random_cup_label,
'all_masks': multi_rater_cup,
'random_disc_label': random_disc_label,
'majorityvote_cup_label': majorityvote_cup_label,
'majorityvote_disc_label': majorityvote_disc_label,
'multi_rater_cup': multi_rater_cup,
'image_meta_dict': image_meta_dict,
}
class LIDC_IDRI(Dataset):
def __init__(self, dataset_location, transform=None, split_ratio=(0.8, 0.2)):
self.transform = transform
self.data = []
self.labels = []
self.series_uid = []
self.image_sizes = []
self.load_data(dataset_location)
self.train_indices, self.val_indices = self._split_dataset(len(self.data), split_ratio)
def load_data(self, file_path):
max_bytes = 2 ** 31 - 1
bytes_in = bytearray(0)
input_size = os.path.getsize(file_path)
with open(file_path, 'rb') as f_in:
for _ in range(0, input_size, max_bytes):
bytes_in += f_in.read(max_bytes)
new_data = pickle.loads(bytes_in)
for key, value in new_data.items():
self.data.append(value['image'].astype(float))
self.labels.append(value['masks'])
self.series_uid.append(value['series_uid'])
self.image_sizes.append(value['image'].shape)
def _split_dataset(self, total_size, split_ratio):
indices = list(range(total_size))
train_end = int(split_ratio[0] * total_size)
val_end = train_end + int(split_ratio[1] * total_size)
return indices[:train_end], indices[train_end:val_end]
def resize_channel_totensor(self, image):
image = np.repeat(image[:, :, np.newaxis], 3, axis=2)
image_tensor = torch.from_numpy(image).float()
image_tensor = image_tensor.permute(2, 0, 1)
return image_tensor
def majority_vote(self, masks):
num_masks, height, width = masks.shape
final_mask = np.zeros((height, width), dtype=float)
if np.sum(np.all(masks == 0, axis=(1, 2))) >= 2:
return final_mask
for h in range(height):
for w in range(width):
votes = np.sum(masks[:, h, w])
if votes > num_masks // 2:
final_mask[h, w] = 1
return final_mask
def __getitem__(self, index):
image = self.data[index]
masks_four = np.array(self.labels[index])
label = self.majority_vote(masks_four).astype(float)
masks = self.labels[index]
transform_label = transforms.Compose([
transforms.ToTensor(),
])
if isinstance(label, np.ndarray):
label = Image.fromarray((label * 255).astype(np.uint8))
if isinstance(masks, list):
masks = [Image.fromarray((mask * 255).astype(np.uint8)) for mask in masks]
if self.transform:
image = self.resize_channel_totensor(image)
label = transform_label(label)
masks = [transform_label(mask) for mask in masks]
threshold = 0.5
label = (label > threshold).float()
masks = [(mask > threshold).float() for mask in masks]
return {
'image': image,
'majorityvote_label': label,
'random_label': random.choice(masks),
'all_masks': torch.stack(masks),
}
def __len__(self):
return len(self.data)
def get_train_val_test(self):
train_dataset = Subset(self, self.train_indices)
val_dataset = Subset(self, self.val_indices)
return train_dataset, val_dataset
def build_dataset(args):
transform_refuge = transforms.Compose([
transforms.Resize((args.img_size, args.img_size)),
transforms.ToTensor(),
])
transform_lidc = transforms.Compose([
transforms.ToTensor(),
])
if args.dataset == 'refuge':
train_dataset = REFUGE(args.dataset_path, transform=transform_refuge, mode='Training')
val_dataset = REFUGE(args.dataset_path, transform=transform_refuge, mode='Validation')
test_dataset = REFUGE(args.dataset_path, transform=transform_refuge, mode='Test')
elif args.dataset == 'lidc':
full_dataset = LIDC_IDRI(args.dataset_path, transform=transform_lidc,
split_ratio=args.split_ratio)
train_dataset, val_dataset = full_dataset.get_train_val_test()
test_dataset = val_dataset
else:
raise ValueError(f"Unknown dataset: {args.dataset}")
return train_dataset, val_dataset, test_dataset