-
Notifications
You must be signed in to change notification settings - Fork 163
/
Copy pathtest.py
383 lines (341 loc) · 14 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import argparse
import json
import yaml
from torch.utils.data import DataLoader
from utils.datasets import *
from utils.utils import *
def test(data,
weights=None,
batch_size=16,
imgsz=640,
conf_thres=0.001,
iou_thres=0.6, # for NMS
save_json=False,
single_cls=False,
augment=False,
model=None,
dataloader=None,
fast=False,
verbose=False):
# Initialize/load model and set device
if model is None:
training = False
device = torch_utils.select_device(opt.device, batch_size=batch_size)
half = device.type != 'cpu' # half precision only supported on CUDA
# Remove previous
for f in glob.glob('test_batch*.jpg'):
os.remove(f)
# Load model
google_utils.attempt_download(weights)
model = torch.load(weights, map_location="cpu")[
'model'].float() # load to FP32
torch_utils.model_info(model)
model.fuse()
model.to(device)
if half:
model.half() # to FP16
if device.type != 'cpu' and torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
else: # called by train.py
training = True
device = next(model.parameters()).device # get model device
half = device.type != 'cpu' # half precision only supported on CUDA
if half:
model.half() # to FP16
# Configure
model.eval()
with open(data) as f:
data = yaml.load(f, Loader=yaml.FullLoader) # model dict
nc = 1 if single_cls else int(data['nc']) # number of classes
iouv = torch.linspace(0.5, 0.95, 10).to(
device) # iou vector for [email protected]:0.95
# iouv = iouv[0].view(1) # comment for [email protected]:0.95
niou = iouv.numel()
# Dataloader
if dataloader is None: # not training
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
_ = model(
img.half() if half else img) if device.type != 'cpu' else None # run once
fast |= conf_thres > 0.001 # enable fast mode
# path to val/test images
path = data['test'] if opt.task == 'test' else data['val']
dataset = LoadImagesAndLabels(path,
imgsz,
batch_size,
rect=True, # rectangular inference
single_cls=opt.single_cls, # single class mode
pad=0.5) # padding
batch_size = min(batch_size, len(dataset))
# number of workers
nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])
dataloader = DataLoader(dataset,
batch_size=batch_size,
num_workers=nw,
pin_memory=True,
collate_fn=dataset.collate_fn)
seen = 0
names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
coco91class = coco80_to_coco91_class()
s = ('%20s' + '%12s' * 6) % ('Class', 'Images',
'Targets', 'P', 'R', '[email protected]', '[email protected]:.95')
p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
loss = torch.zeros(3, device=device)
jdict, stats, ap, ap_class = [], [], [], []
for batch_i, (img, targets, paths, shapes) in enumerate(
tqdm(dataloader, desc=s)):
img = img.to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
targets = targets.to(device)
nb, _, height, width = img.shape # batch size, channels, height, width
whwh = torch.Tensor([width, height, width, height]).to(device)
# Disable gradients
with torch.no_grad():
# Run model
t = torch_utils.time_synchronized()
# inference and training outputs
inf_out, train_out = model(img, augment=augment)
t0 += torch_utils.time_synchronized() - t
# Compute loss
if training: # if model has loss hyperparameters
# GIoU, obj, cls
loss += compute_loss([x.float()
for x in train_out], targets, model)[1][:3]
# Run NMS
t = torch_utils.time_synchronized()
output = non_max_suppression(
inf_out,
conf_thres=conf_thres,
iou_thres=iou_thres,
fast=fast)
t1 += torch_utils.time_synchronized() - t
# Statistics per image
for si, pred in enumerate(output):
labels = targets[targets[:, 0] == si, 1:]
nl = len(labels)
tcls = labels[:, 0].tolist() if nl else [] # target class
seen += 1
if pred is None:
if nl:
stats.append(
(torch.zeros(
0,
niou,
dtype=torch.bool),
torch.Tensor(),
torch.Tensor(),
tcls))
continue
# Append to text file
# with open('test.txt', 'a') as file:
# [file.write('%11.5g' * 7 % tuple(x) + '\n') for x in pred]
# Clip boxes to image bounds
clip_coords(pred, (height, width))
# Append to pycocotools JSON dictionary
if save_json:
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
image_id = int(Path(paths[si]).stem.split('_')[-1])
box = pred[:, :4].clone() # xyxy
scale_coords(img[si].shape[1:], box, shapes[si]
[0], shapes[si][1]) # to original shape
box = xyxy2xywh(box) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for p, b in zip(pred.tolist(), box.tolist()):
jdict.append({'image_id': image_id,
'category_id': coco91class[int(p[5])],
'bbox': [round(x, 3) for x in b],
'score': round(p[4], 5)})
# Assign all predictions as incorrect
correct = torch.zeros(
pred.shape[0],
niou,
dtype=torch.bool,
device=device)
if nl:
detected = [] # target indices
tcls_tensor = labels[:, 0]
# target boxes
tbox = xywh2xyxy(labels[:, 1:5]) * whwh
# Per target class
for cls in torch.unique(tcls_tensor):
ti = (cls == tcls_tensor).nonzero(
).view(-1) # prediction indices
pi = (cls == pred[:, 5]).nonzero(
).view(-1) # target indices
# Search for detections
if pi.shape[0]:
# Prediction to target ious
ious, i = box_iou(pred[pi, :4], tbox[ti]).max(
1) # best ious, indices
# Append detections
for j in (ious > iouv[0]).nonzero():
d = ti[i[j]] # detected target
if d not in detected:
detected.append(d)
# iou_thres is 1xn
correct[pi[j]] = ious[j] > iouv
if len(
detected) == nl: # all targets already located in image
break
# Append statistics (correct, conf, pcls, tcls)
stats.append(
(correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
# Plot images
if batch_i < 1:
f = 'test_batch%g_gt.jpg' % batch_i # filename
plot_images(img, targets, paths, f, names) # ground truth
f = 'test_batch%g_pred.jpg' % batch_i
plot_images(
img,
output_to_target(
output,
width,
height),
paths,
f,
names) # predictions
# Compute statistics
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
if len(stats):
p, r, ap, f1, ap_class = ap_per_class(*stats)
p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(
1) # [P, R, [email protected], [email protected]:0.95]
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
nt = np.bincount(stats[3].astype(np.int64),
minlength=nc) # number of targets per class
else:
nt = torch.zeros(1)
# Print results
pf = '%20s' + '%12.3g' * 6 # print format
print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
# Print results per class
if verbose and nc > 1 and len(stats):
for i, c in enumerate(ap_class):
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
# Print speeds
t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + \
(imgsz, imgsz, batch_size) # tuple
if not training:
print(
'Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' %
t)
# Save JSON
if save_json and map50 and len(jdict):
imgIds = [int(Path(x).stem.split('_')[-1])
for x in dataloader.dataset.img_files]
f = 'detections_val2017_%s_results.json' % \
(weights.split(os.sep)[-1].replace('.pt', '')
if weights else '') # filename
print('\nCOCO mAP with pycocotools... saving %s...' % f)
with open(f, 'w') as file:
json.dump(jdict, file)
try:
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
# https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
# initialize COCO ground truth api
cocoGt = COCO(
glob.glob('../coco/annotations/instances_val*.json')[0])
cocoDt = cocoGt.loadRes(f) # initialize COCO pred api
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
cocoEval.params.imgIds = imgIds # image IDs to evaluate
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
# update results ([email protected]:0.95, [email protected])
map, map50 = cocoEval.stats[:2]
except BaseException:
print('WARNING: pycocotools must be installed with numpy==1.17 to run correctly. '
'See https://github.com/cocodataset/cocoapi/issues/356')
# Return results
maps = np.zeros(nc) + map
for i, c in enumerate(ap_class):
maps[c] = ap[i]
return (mp, mr, map50, map, *(loss.cpu() /
len(dataloader)).tolist()), maps, t
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog='test.py')
parser.add_argument(
'--weights',
type=str,
default='',
help='model.pt path')
parser.add_argument(
'--data',
type=str,
default='data/voc.yaml',
help='*.data path')
parser.add_argument(
'--batch-size',
type=int,
default=16,
help='size of each image batch')
parser.add_argument(
'--img-size',
type=int,
default=640,
help='inference size (pixels)')
parser.add_argument(
'--conf-thres',
type=float,
default=0.001,
help='object confidence threshold')
parser.add_argument(
'--iou-thres',
type=float,
default=0.6,
help='IOU threshold for NMS')
parser.add_argument(
'--save-json',
action='store_true',
help='save a cocoapi-compatible JSON results file')
parser.add_argument('--task', default='val', help="'val', 'test', 'study'")
parser.add_argument(
'--device',
default='',
help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument(
'--single-cls',
action='store_true',
help='treat as single-class dataset')
parser.add_argument(
'--augment',
action='store_true',
help='augmented inference')
parser.add_argument(
'--verbose',
default=True,
action='store_true',
help='report mAP by class')
opt = parser.parse_args()
opt.img_size = check_img_size(opt.img_size)
opt.save_json = opt.save_json or opt.data.endswith('coco.yaml')
opt.data = check_file(opt.data) # check file
print(opt)
# task = 'val', 'test', 'study'
if opt.task in ['val', 'test']: # (default) run normally
test(opt.data,
opt.weights,
opt.batch_size,
opt.img_size,
opt.conf_thres,
opt.iou_thres,
opt.save_json,
opt.single_cls,
opt.augment,
verbose=opt.verbose)
elif opt.task == 'study': # run over a range of settings and save/plot
for weights in ['yolov5s.pt', 'yolov5m.pt',
'yolov5l.pt', 'yolov5x.pt']:
f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(
weights).stem) # filename to save to
x = list(range(288, 896, 64)) # x axis
y = [] # y axis
for i in x: # img-size
print('\nRunning %s point %s...' % (f, i))
r, _, t = test(opt.data, weights, opt.batch_size,
i, opt.conf_thres, opt.iou_thres, opt.save_json)
y.append(r + t) # results and times
np.savetxt(f, y, fmt='%10.4g') # save
os.system('zip -r study.zip study_*.txt')
# plot_study_txt(f, x) # plot