-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear.py
120 lines (100 loc) · 5.9 KB
/
linear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import argparse
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from thop import profile, clever_format
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10, CIFAR100, STL10
from tqdm import tqdm
import utils
from model import Model
class Net(nn.Module):
def __init__(self, num_class, pretrained_path):
super(Net, self).__init__()
# encoder
self.f = Model().f
# classifier
self.fc = nn.Linear(2048, num_class, bias=True)
self.load_state_dict(torch.load(pretrained_path, map_location='cpu'), strict=False)
def forward(self, x):
x = self.f(x)
feature = torch.flatten(x, start_dim=1)
out = self.fc(feature)
return out
# train or test for one epoch
def train_val(net, data_loader, train_optimizer):
is_train = train_optimizer is not None
net.train() if is_train else net.eval()
total_loss, total_correct_1, total_correct_5, total_num, data_bar = 0.0, 0.0, 0.0, 0, tqdm(data_loader)
with (torch.enable_grad() if is_train else torch.no_grad()):
for data, target in data_bar:
data, target = data.cuda(non_blocking=True), target.cuda(non_blocking=True)
out = net(data)
loss = loss_criterion(out, target)
if is_train:
train_optimizer.zero_grad()
loss.backward()
train_optimizer.step()
total_num += data.size(0)
total_loss += loss.item() * data.size(0)
prediction = torch.argsort(out, dim=-1, descending=True)
total_correct_1 += torch.sum((prediction[:, 0:1] == target.unsqueeze(dim=-1)).any(dim=-1).float()).item()
total_correct_5 += torch.sum((prediction[:, 0:5] == target.unsqueeze(dim=-1)).any(dim=-1).float()).item()
data_bar.set_description('{} Epoch: [{}/{}] Loss: {:.4f} ACC@1: {:.2f}% ACC@5: {:.2f}%'
.format('Train' if is_train else 'Test', epoch, epochs, total_loss / total_num,
total_correct_1 / total_num * 100, total_correct_5 / total_num * 100))
return total_loss / total_num, total_correct_1 / total_num * 100, total_correct_5 / total_num * 100
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Linear Evaluation')
parser.add_argument('--model_path', type=str, default='results/128_0.5_200_512_500_model.pth',
help='The pretrained model path')
parser.add_argument('--batch_size', type=int, default=512, help='Number of images in each mini-batch')
parser.add_argument('--epochs', type=int, default=100, help='Number of sweeps over the dataset to train')
parser.add_argument('--save_path', default='results', type=str, help='save path')
parser.add_argument('--dataset', default='cifar10', type=str, help='train dataset')
args = parser.parse_args()
model_path, batch_size, epochs = args.model_path, args.batch_size, args.epochs
if args.dataset == 'cifar10':
train_data = CIFAR10(root='data', train=True, transform=utils.train_transform_cifar10, download=True)
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=16, pin_memory=True)
test_data = CIFAR10(root='data', train=False, transform=utils.test_transform_cifar10, download=True)
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False, num_workers=16, pin_memory=True)
elif args.dataset == 'cifar100':
train_data = CIFAR100(root='data', train=True, transform=utils.train_transform_cifar100, download=True)
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=16, pin_memory=True)
test_data = CIFAR100(root='data', train=False, transform=utils.test_transform_cifar100, download=True)
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False, num_workers=16, pin_memory=True)
elif args.dataset == 'stl10':
train_data = STL10(root='data', split='train', transform=utils.train_transform_stl10, download=True)
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=16, pin_memory=True)
test_data = STL10(root='data', split='test', transform=utils.test_transform_stl10, download=True)
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False, num_workers=16, pin_memory=True)
else:
raise Exception("unvalid dataset")
model = Net(num_class=len(train_data.classes), pretrained_path=model_path).cuda()
for param in model.f.parameters():
param.requires_grad = False
flops, params = profile(model, inputs=(torch.randn(1, 3, 32, 32).cuda(),))
flops, params = clever_format([flops, params])
print('# Model Params: {} FLOPs: {}'.format(params, flops))
optimizer = optim.Adam(model.fc.parameters(), lr=1e-3, weight_decay=1e-6)
loss_criterion = nn.CrossEntropyLoss()
results = {'train_loss': [], 'train_acc@1': [], 'train_acc@5': [],
'test_loss': [], 'test_acc@1': [], 'test_acc@5': []}
best_acc = 0.0
for epoch in range(1, epochs + 1):
train_loss, train_acc_1, train_acc_5 = train_val(model, train_loader, optimizer)
results['train_loss'].append(train_loss)
results['train_acc@1'].append(train_acc_1)
results['train_acc@5'].append(train_acc_5)
test_loss, test_acc_1, test_acc_5 = train_val(model, test_loader, None)
results['test_loss'].append(test_loss)
results['test_acc@1'].append(test_acc_1)
results['test_acc@5'].append(test_acc_5)
# save statistics
data_frame = pd.DataFrame(data=results, index=range(1, epoch + 1))
data_frame.to_csv(args.save_path+'/linear_statistics.csv', index_label='epoch')
if test_acc_1 > best_acc:
best_acc = test_acc_1
torch.save(model.state_dict(), args.save_path+'/linear_model.pth')