-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathtest-benchmark.py
194 lines (164 loc) · 6.44 KB
/
test-benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
"""
@File : test-benchmark.py
@Description : Test ImageReward as a metric for text-to-image generation models.
@CreatedDate : 2023-04-17
@UpdatedDate : 2023-05-23
@Author(s) : Jiazheng Xu <[email protected]>
Shawn Yuxuan Tong <[email protected]>
"""
import argparse
import json
import os
import numpy as np
import torch
from tqdm import tqdm
import ImageReward as RM
def test_benchmark(args):
if torch.cuda.is_available():
device = torch.device(
f"cuda:{args.gpu_id}" if args.gpu_id is not None else "cuda"
)
else:
device = torch.device("cpu")
# load prompt samples
prompt_with_id_list = []
with open(args.prompts_path, "r") as f:
prompt_with_id_list = json.load(f)
num_prompts = len(prompt_with_id_list)
benchmark_types = args.benchmark.split(",")
benchmark_types = [x.strip() for x in benchmark_types]
# resolve the generation model list to be evaluated
model_names = []
if args.model == "default":
model_names = ["openjourney", "sd2-1", "dalle2", "sd1-4", "vd", "cogview2"]
elif args.model == "all":
model_names = list(os.listdir(args.img_dir))
else:
model_names = args.model.split(",")
model_names = [x.strip() for x in model_names]
benchmark_name2result = {}
for benchmark_type in benchmark_types:
# load the model for benchmark
print(f"Loading {benchmark_type} model...")
model = None
if benchmark_type == "ImageReward-v1.0":
model = RM.load(name=benchmark_type, device=device, download_root=rm_path)
else:
model = RM.load_score(
name=benchmark_type, device=device, download_root=rm_path
)
print(f"{benchmark_type} benchmark begins!")
bench_scores = []
result_dir = os.path.join(args.result_dir, benchmark_type)
if not os.path.isdir(result_dir):
os.makedirs(result_dir, exist_ok=True)
# evaluate the model(s)
with torch.no_grad():
for model_name in model_names:
result_sample = []
mean_score_list = []
for item in tqdm(prompt_with_id_list):
prompt_id = item["id"]
prompt = item["prompt"]
model_img_dirpath = os.path.join(args.img_dir, model_name)
num_model_imgs = len(os.listdir(model_img_dirpath))
image_paths = [
os.path.join(model_img_dirpath, f"{prompt_id}_{x}.png")
for x in range(num_model_imgs // num_prompts)
]
if benchmark_type == "ImageReward-v1.0":
rewards = model.score(prompt, image_paths)
else:
_, rewards = model.inference_rank(prompt, image_paths)
mean_score = np.mean(rewards)
mean_score_list.append(mean_score)
result_item = {
"id": prompt_id,
"prompt": prompt,
"mean_score": mean_score,
"rewards": rewards,
}
result_sample.append(result_item)
result_path = os.path.join(
result_dir, f"{benchmark_type}-benchmark-{model_name}-result.json"
)
with open(result_path, "w") as f:
json.dump(result_sample, f, indent=4, ensure_ascii=False)
bench_score = np.mean(mean_score_list)
bench_scores.append(bench_score)
model2score = dict(zip(model_names, bench_scores))
benchmark_results_path = os.path.join(
args.result_dir, f"{benchmark_type}-benchmark-results.json"
)
with open(
benchmark_results_path,
"w",
) as f:
json.dump(model2score, f, indent=4, ensure_ascii=False)
print(
f"{benchmark_type} benchmark finished with result dumped to {benchmark_results_path}!"
)
benchmark_name2result[benchmark_type] = model2score
max_len_model_name = max([len(model_name) for model_name in model_names])
num_digits = 4
for benchmark_type, model2score in benchmark_name2result.items():
print(f"{benchmark_type} Benchmark Results:")
print(f"|{'Model':^{max_len_model_name+2}s}|{'Score':^{num_digits+5}}|")
print(f"|{'-'*(max_len_model_name+1)}:|:{'-'*(num_digits+3)}:|")
for model_name, bench_score in model2score.items():
print(
f"| {model_name:>{max_len_model_name}s} | {bench_score:^{num_digits+3}.{num_digits}f} |"
)
print()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompts_path",
default="benchmark/benchmark-prompts.json",
type=str,
help="Path to the prompts json list file, each item of which is a dict with keys `id` and `prompt`.",
)
parser.add_argument(
"--result_dir",
default="benchmark/results/",
type=str,
help="Path to the metric results directory",
)
parser.add_argument(
"--img_dir",
default="benchmark/generations",
type=str,
help="Path to the generated images directory. The sub-level directory name should be the name of the model and should correspond to the name specified in `model`.",
)
parser.add_argument(
"--model",
default="default",
type=str,
help="""default(["openjourney", "sd2-1", "dalle2", "sd1-4", "vd", "cogview2"]), all or any specified model names splitted with comma(,).""",
)
parser.add_argument(
"--benchmark",
default="ImageReward-v1.0, CLIP",
type=str,
help="ImageReward-v1.0, Aesthetic, BLIP or CLIP, splitted with comma(,) if there are multiple benchmarks.",
)
parser.add_argument(
"--rm_path",
default=None,
type=str,
help="Path to place downloaded reward model in.",
)
parser.add_argument(
"--gpu_id",
default=None,
type=str,
help="GPU ID(s) to use for CUDA.",
)
args = parser.parse_args()
if args.rm_path is not None:
rm_path = os.path.expanduser(args.rm_path)
if not os.path.exists(rm_path):
os.makedirs(rm_path)
else:
rm_path = None
test_benchmark(args)