-
Notifications
You must be signed in to change notification settings - Fork 315
/
Copy pathgcn.py
63 lines (47 loc) · 1.92 KB
/
gcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import jittor as jt
jt.flags.use_cuda = 1
from jittor import nn, Module, init
from jittor import optim
from jittor.contrib import slice_var_index
from tqdm import tqdm
from cogdl.layers.jittor import GCNLayer
from cogdl.datasets.planetoid_data import CoraDataset
def tensor2jit(x):
return jt.array(x.cpu().numpy())
class GCN(Module):
def __init__(self, in_feats, hidden_size, out_feats, dropout=0.5):
super(GCN, self).__init__()
self.in_feats = in_feats
self.conv1 = GCNLayer(in_feats, hidden_size, dropout=dropout, activation="relu")
self.conv2 = GCNLayer(hidden_size, out_feats)
def execute(self, graph):
graph.sym_norm()
x = tensor2jit(graph.x)
out = self.conv1(graph, x)
out = self.conv2(graph, out)
return out
def train(model, dataset):
graph = dataset[0]
optimizer = nn.AdamW(model.parameters(), lr=0.01)
loss_function = nn.CrossEntropyLoss()
train_mask = tensor2jit(graph.train_mask)
test_mask = tensor2jit(graph.test_mask)
val_mask = tensor2jit(graph.val_mask)
labels = tensor2jit(graph.y)
for epoch in range(100):
model.train()
output = model(graph)
loss = loss_function(output[train_mask], labels[train_mask])
optimizer.step(loss)
model.eval()
with jt.no_grad():
output = model(graph)
pred = output.argmax(1)[0]
train_acc = (pred[train_mask] == labels[train_mask]).float().mean()
val_acc = (pred[val_mask] == labels[val_mask]).float().mean()
test_acc = (pred[test_mask] == labels[test_mask]).float().mean()
print(f"Epoch:{epoch}, loss:{loss:.3f}, val_acc:{val_acc:.3f}, test_acc:{test_acc:.3f}")
if __name__ == "__main__":
dataset = CoraDataset()
model = GCN(in_feats=dataset.num_features, hidden_size=64, out_feats=dataset.num_classes, dropout=0.5)
train(model, dataset)