This repository has been archived by the owner on Aug 12, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflametemp.m
67 lines (47 loc) · 2.37 KB
/
flametemp.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
%% Adiabatic Flame Temperature
%% Adiabatic flame temperature for kerosene
function [T_flame] = flametemp(T3)
R = 287;
j=1;
for phi=0.5:0.1:1
phi_store(j) = phi ;
T3(1) = 500 ; %[K] Initial flame temperature guess
del_T = 10 ;
T_ad(1) = 1000 ; %[K] Initial Adiabatic flame temperature setting
i = 1 ; %[] counter
T_inf = 298 ;
while T3(i) < T_ad(i)
del_kerosene = 46200 ; %kJ/kg Heat of combustion for kerosene: Combustion Science and Engineering pg 990
n_kerosene = 0 ;
% number of mols of reactants
%phi = 1
n_CO2 = 24*44 ; %[kg]
n_H2O = 26*18 ; %[kg]
n_O2 = 0 ;
n_PMMA = 0 ;
%Specific heats
a1 = 0.3644E2;
a2 = 0.5614801E-1;
a3 = -0.16091551E-4;
a4 = 0.2147849E-8;
a5 = -0.1013118E-12;
a6 = -0.63890109E5;
c_p_kerosene = R*(a1 + a2*T3(i) + a3*T3(i)^2 + a4*T3(i)^3 + a5*T3(i)^4);
c_p_CO2 = -6.40953e-22*T3(i)^6 +1.35711e-17*T3(i)^5 -1.14921e-13*T3(i)^4 +5.00001e-10*T3(i)^3 -1.19628e-6*T3(i)^2 +1.56371e-3*T3(i) +4.71107e-1 ; %[kJ/(kg K)] 175K-6000K Engineering Toolbox
c_p_H2O = 1.24400e-21*T3(i)^6 -2.52232e-17*T3(i)^5 +1.98003e-13*T3(i)^4 -7.41265e-10*T3(i)^3 +1.23513e-6*T3(i)^2 -2.26210e-4*T3(i) +1.84352e0 ; %[KJ/(kg K)] 175K-6000K Engineering Toolbox
c_p_O2 = 2e-22*T3(i)^6 -3e-18*T3(i)^5 +2e-14*T3(i)^4 -2e-11*T3(i)^3 -9e-8*T3(i)^2 +0.0003*T3(i) +0.83 ; %[KJ/(kg K)] 175K-6000K Engineering Toolbox
c_p_CH4 = 1e-20*T3(i)^6 -2e-16*T3(i)^5 +1e-12*T3(i)^4 -4e-09*T3(i)^3 +4e-6*T3(i)^2 +0.0009*T3(i) +1.7695 ; %[KJ/(kg K)] Combustion Science and Engineering pg 1012-1013
c_p_PMMA = 0 ;
% T_ad(i+1) = T_inf + del_Hc/(n_CO2*c_p_CO2 +n_H2O*c_p_H2O +n_N2*c_p_N2 +n_O2*c_p_O2 +n_CH4*c_p_CH4 + n_PMMA*c_p_PMMA) ;
T_ad(i+1) = T_inf + (del_kerosene*16)/(n_CO2*c_p_CO2 +n_H2O*c_p_H2O) ;
T3(i+1) = T3(i) + del_T ;
i=i+1 ;
if i > 10000
break
end
end
format short
T_ad_soln(j) = T_ad(end-1) ;
T_ad_stoic_turns = 2222 ; %[K] adiabatic flame temperature of stoiciometric kerosene from Turns
j=j+1 ;
end