1st Place Winner Quadreal AI Challenge 🏆 Using ML to predict mission IoT sensor data
Devpost Link: https://devpost.com/software/quadreal-challenge
- This is our submission to Quadreal AI Challenge organized by uWaterloo Data Science Club
- In this Kaggle-style competition the goal is to ML to predict mission IoT sensor data
- Using a combination of clever feature engineering techniques and XGBoost we won the first place prize in this competition
- We devise a solution to predict missing values for IAQ sensor data in the occasion of outages.
- We also propose a solution for detecting anomalies to be used by sensors to flag abnormal air conditions.
- Doing Analysis on Time Series Data: Analyzing time series data about trends, seasonality, cyclical etc.
- K-Fold Mean Target Encoding: This feature made the biggest different in our MSE score.
- XGBoost: Our versatile classification model.
- Isolation Forest: Useful for anomaly detection.
From the competition server:
![image](https://private-user-images.githubusercontent.com/55645993/340577116-93b7cba3-37e6-44f8-8991-8052f07b3324.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzk1MjU5MjcsIm5iZiI6MTczOTUyNTYyNywicGF0aCI6Ii81NTY0NTk5My8zNDA1NzcxMTYtOTNiN2NiYTMtMzdlNi00NGY4LTg5OTEtODA1MmYwN2IzMzI0LnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMTQlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjE0VDA5MzM0N1omWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPTA1YWFhNTUxNzgyMDMyMDM1OGVkNmQ3MTg3OWYxOGU1NDE5NmE4MzNjZDM3YjAwNDM2ZmEyOGY5OWNkMGE3MjQmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.HM-ScctxlXW0pWjhFl9MjckWrTKjva-Zx3PXSso1S30)