forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnearest_neighbour_search.py
79 lines (64 loc) · 2.69 KB
/
nearest_neighbour_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# Created by: Ramy-Badr-Ahmed (https://github.com/Ramy-Badr-Ahmed)
# in Pull Request: #11532
# https://github.com/TheAlgorithms/Python/pull/11532
#
# Please mention me (@Ramy-Badr-Ahmed) in any issue or pull request
# addressing bugs/corrections to this file.
# Thank you!
from data_structures.kd_tree.kd_node import KDNode
def nearest_neighbour_search(
root: KDNode | None, query_point: list[float]
) -> tuple[list[float] | None, float, int]:
"""
Performs a nearest neighbor search in a KD-Tree for a given query point.
Args:
root (KDNode | None): The root node of the KD-Tree.
query_point (list[float]): The point for which the nearest neighbor
is being searched.
Returns:
tuple[list[float] | None, float, int]:
- The nearest point found in the KD-Tree to the query point,
or None if no point is found.
- The squared distance to the nearest point.
- The number of nodes visited during the search.
"""
nearest_point: list[float] | None = None
nearest_dist: float = float("inf")
nodes_visited: int = 0
def search(node: KDNode | None, depth: int = 0) -> None:
"""
Recursively searches for the nearest neighbor in the KD-Tree.
Args:
node: The current node in the KD-Tree.
depth: The current depth in the KD-Tree.
"""
nonlocal nearest_point, nearest_dist, nodes_visited
if node is None:
return
nodes_visited += 1
# Calculate the current distance (squared distance)
current_point = node.point
current_dist = sum(
(query_coord - point_coord) ** 2
for query_coord, point_coord in zip(query_point, current_point)
)
# Update nearest point if the current node is closer
if nearest_point is None or current_dist < nearest_dist:
nearest_point = current_point
nearest_dist = current_dist
# Determine which subtree to search first (based on axis and query point)
k = len(query_point) # Dimensionality of points
axis = depth % k
if query_point[axis] <= current_point[axis]:
nearer_subtree = node.left
further_subtree = node.right
else:
nearer_subtree = node.right
further_subtree = node.left
# Search the nearer subtree first
search(nearer_subtree, depth + 1)
# If the further subtree has a closer point
if (query_point[axis] - current_point[axis]) ** 2 < nearest_dist:
search(further_subtree, depth + 1)
search(root, 0)
return nearest_point, nearest_dist, nodes_visited