-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPolyDeriv.m
193 lines (174 loc) · 4.92 KB
/
PolyDeriv.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
function varargout = PolyDeriv(Y, X, NumPoints, Order)
% [dY_1, dY_2, ...] = PolyDeriv(Y, DeltaX, NumPoints, Order)
% ... OR ...
% [dY_1, dY_2, ...] = PolyDeriv(Y, X, NumPoints, Order)
% Takes numerical derivatives by fitting polynomials to Y.
% If X has constant spacing, using the first form is
% computationally more efficient.
% INPUT:
% -Y: waveform to be differentiated
% -DeltaX: sampling period
% -X: list of sample locations/times
% OPTIONAL:
% -NumPoints: number of points to use in fitting polynomials
% (default is 5)
% -Order: order of polynomial to use in fitting. (default is
% 1 + maximum requested derivative if NumPoints is specified,
% otherwise it is 4)
% OUTPUT:
% -dY_1: The first derivative of Y. It is sampled at the same X
% coordinates as Y.
% ... each subsequent output argument is a higher-order
% derivative. You can request at most Order derivatives.
if(nargin < 2)
error('Incorrect number of input arguments')
elseif(nargin < 3)
NumPoints = 5;
Order = 4;
elseif(nargin < 4)
Order = nargout + 1;
if(NumPoints ~= round(NumPoints))
error('NumPoints must be an integer')
end
else
if(NumPoints ~= round(NumPoints))
error('NumPoints must be an integer')
elseif(Order ~= round(Order))
error('Order must be an integer')
end
end
if(nargout > Order)
error(['Too many output arguments. To take higher derivatives,' ...
' increase Order'])
end
if(mod(NumPoints, 2) == 0)
error('NumPoints must be odd')
end
if(size(Y,2) > size(Y,1))
Y = Y';
Flip = true;
else
Flip = false;
end
if(length(X) == 1)
DeltaX = X;
Coefs = GetDerivCoefs(NumPoints, Order, DeltaX);
NumLeadPts = (NumPoints - 1) / 2;
if(nargout == 1)
YPrime = zeros(size(Y));
TempYFront = Y(1:NumPoints,:);
TempYBack = Y((end-NumPoints+1):end,:);
for n = 1:NumLeadPts
C1 = Coefs{n}(1,:);
C2 = Coefs{NumPoints + 1 - n}(1,:);
YPrime(n,:) = C1 * TempYFront;
YPrime(end-n+1,:) = C2 * TempYBack;
end
C = Coefs{NumLeadPts + 1}(1,:);
Temp = zeros(size(Y,1)-NumPoints+1, size(Y,2));
for n = 1:NumPoints
Temp = Temp + C(n) * Y(n:(end-NumPoints+n),:);
end
YPrime(NumLeadPts+1:(end-NumLeadPts),:) = Temp;
varargout = {YPrime};
else
varargout = cell(nargout, 1);
Temp = cell(nargout, 1);
for DOrder = 1:nargout
varargout{DOrder} = zeros(size(Y));
Temp{DOrder} = zeros(size(Y,1)-NumPoints+1, size(Y,2));
end
TempYFront = Y(1:NumPoints,:);
TempYBack = Y((end-NumPoints+1):end,:);
for n = 1:NumLeadPts
C1 = Coefs{n};
C2 = Coefs{NumPoints + 1 - n};
for DOrder = 1:nargout
varargout{DOrder}(n,:) = C1(DOrder,:) * TempYFront;
varargout{DOrder}(end-n+1,:) = C2(DOrder,:) * TempYBack;
end
end
C = Coefs{NumLeadPts + 1};
for n = 1:NumPoints
TempY = Y(n:(end-NumPoints+n),:);
for DOrder = 1:nargout
Temp{DOrder} = Temp{DOrder} + C(DOrder,n) * TempY;
end
end
for DOrder = 1:nargout
varargout{DOrder}(NumLeadPts+1:(end-NumLeadPts),:) = Temp{DOrder};
end
end
else % X is a list of values
if(size(X,1) == 1)
X = X';
end
if(length(X) ~= length(Y))
error('X and Y must have the same number of sample points.')
end
varargout = cell(nargout, 1);
for DOrder = 1:nargout
varargout{DOrder} = zeros(size(Y));
end
TempYFront = Y(1:NumPoints,:);
TempYBack = Y((end-NumPoints+1):end,:);
TempXFront = X(1:NumPoints);
TempXBack = X((end-NumPoints+1):end);
NumLeadPts = (NumPoints - 1) / 2;
for n = 1:NumLeadPts
C1 = GetInstDerivCoefs(NumPoints, Order, TempXFront - X(n));
C2 = GetInstDerivCoefs(NumPoints, Order, TempXBack - X(end-n+1));
for DOrder = 1:nargout
varargout{DOrder}(n,:) = C1(DOrder,:) * TempYFront;
varargout{DOrder}(end-n+1,:) = C2(DOrder,:) * TempYBack;
end
end
nStart = NumLeadPts + 1;
nStop = length(X) - NumLeadPts;
for n = nStart:nStop
TempX = X((n-NumLeadPts):(n+NumLeadPts));
TempY = Y((n-NumLeadPts):(n+NumLeadPts),:);
C = GetInstDerivCoefs(NumPoints, Order, TempX - X(n));
for DOrder = 1:nargout
varargout{DOrder}(n,:) = C(DOrder,:) * TempY;
end
end
end
if(Flip)
for n=1:nargout
varargout{n} = varargout{n}';
end
end
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Coefs = GetDerivCoefs(NumPoints, Order, DeltaX)
J = zeros(Order + 1, NumPoints);
for n=1:NumPoints
Z = (1-n):(NumPoints-n);
for m=0:Order
J(m+1,:) = Z.^m;
end
C = pinv(J');
C = C(2:end,:);
Fact = 1;
for m=1:Order
Fact = Fact * m / DeltaX;
C(m,:) = C(m,:) * Fact;
end
Coefs{n} = C;
end
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function C = GetInstDerivCoefs(NumPoints, Order, X)
JTrans = zeros(NumPoints, Order + 1);
for m=0:Order
JTrans(:,m+1) = X.^m;
end
C = pinv(JTrans);
C = C(2:end,:);
Fact = 1;
for m=2:Order
Fact = Fact * m;
C(m,:) = C(m,:) * Fact;
end
return