-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcoh_mt.m
259 lines (227 loc) · 7.08 KB
/
coh_mt.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
function varargout=f(dt,x,nw,K,W_keep,conf_level,p_FFT_extra,tapers)
% dt is a scalar
% nw is the desired time-bandwidth product. The frequency resolution is
% given by nw/(N*dt). Usually, nw=4 is a good place to start.
% conf_level is the confidence level of computed confidence intervals
% N_fft is the length to which data is zero-padded before FFTing
%
% f is the frequency base, which is one-sided
% the varargouts are the sigmas
% this version uses fft(), but does it on one sample, and one taper, at a
% time. Also, it only stores the output up to frequency W_keep. These
% changes make it much more space-efficient that the "standard" multitaper
% code that I wrote. Also, it's very fast.
% this version calculates the autocorrelation, not the autocovariance.
% I.e. we don't subtract off the mean first
% this version works with an arbitrary number of signals
% get the timing info, calc various scalars of interest
N=size(x,1); % number of time points per process sample
Q=size(x,2); % number of signals
R=size(x,3); % number of samples of the process
fs=1/dt;
% process args
if nargin<4 || isempty(K)
K=2*nw-1;
end
if nargin<5 || isempty(W_keep)
W_keep=fs/2;
end
if nargin<6 || isempty(conf_level)
conf_level=0;
end
if nargin<7 || isempty(p_FFT_extra)
p_FFT_extra=2;
end
if nargin<8
tapers=[];
end
% N for FFT
N_fft=2^(ceil(log2(N))+p_FFT_extra);
% compute frequency resolution
f_res_diam=2*nw/(N*dt);
% generate the dpss tapers if necessary
persistent N_memoed nw_memoed K_memoed tapers_memoed;
if isempty(tapers)
if isempty(tapers_memoed) | ...
N_memoed~=N | nw_memoed~=nw | K_memoed~=K
%fprintf(1,'calcing dpss...\n');
tapers_memoed=dpss(N,nw,K);
N_memoed=N;
nw_memoed=nw;
K_memoed=K;
end
tapers=tapers_memoed;
end
tapers=reshape(tapers,[N 1 1 K]);
% generate the frequency base
% hpfi = 'highest positive frequency index'
hpfi=ceil(N_fft/2);
f=fs*(0:(hpfi-1))'/N_fft;
f=f(f<=W_keep);
N_f=length(f);
% taper and do the FFTs
if N_f*Q*R*K<1e5
% if dimensions are not too big, do this the easy way
x_tapered=repmat(tapers,[1 Q R 1]).*repmat(x,[1 1 1 K]);
X=fft(x_tapered,N_fft);
X=X(1:N_f,:,:,:);
else
% if dimensions are big, do this in a more space-efficient way
X=zeros([N_f Q R K]);
for r=1:R % windows
for k=1:K % tapers
x_this_tapered=repmat(tapers(:,:,:,k),[1 Q 1]).*x(:,:,r);
X_this=fft(x_this_tapered,N_fft);
X(:,:,r,k)=X_this(1:N_f,:);
end
end
end
% % convert to power by squaring, and to a density by dividing by fs
% Pxxs=(abs(X).^2)/fs;
% Pyys=(abs(Y).^2)/fs;
% Pyxs=(Y.*conj(X))/fs;
% need to generate all the cross-power spectra, with auto-power spectra on
% the diagonal
Pxys=zeros([N_f Q Q R K]);
for qj=1:Q
conjXqj=conj(X(:,qj,:,:));
for qi=1:Q
Pxys(:,qi,qj,:,:)=X(:,qi,:,:).*conjXqj;
end
end
Pxys=Pxys/fs; % convert to density
% multiply by 2 (i.e. make into one-sided power spectra)
Pxys=2*Pxys;
% plot stuff
%for j=1:K
% n_plots=6;
% figure;
% subplot(n_plots,1,1);
% plot(t,x_tapered(:,:,j));
% ylabel('x tapered');
% title(sprintf('Taper %d',j));
% subplot(n_plots,1,2);
% plot(t,y_tapered(:,:,j));
% ylabel('y tapered');
% subplot(n_plots,1,3);
% plot(f,Pxxs(:,:,j));
% ylabel('Pxx');
% subplot(n_plots,1,4);
% plot(f,Pyys(:,:,j));
% ylabel('Pyy');
% subplot(n_plots,1,5);
% plot(f,abs(Pyxs(:,:,j)));
% ylabel('abs Pyx');
% subplot(n_plots,1,6);
% plot(f,angle(Pyxs(:,:,j)));
% ylabel('angle Pyx');
%end
% _sum_ across samples, tapers (keep these around in case we need to
% calculate the take-away-one spectra for error bars)
PxyRK=sum(sum(Pxys,5),4);
% PxyRK is of shape [N_f Q Q]
% convert the sum across samples, tapers to an average; these are our
% 'overall' spectral estimates
Pxy=PxyRK/(R*K);
% Pxy is of shape [N_f Q Q]
% plot stuff
%n_plots=6;
%figure;
%subplot(n_plots,1,1);
%plot(t,x);
%ylabel('x');
%title(sprintf('Final',j));
%subplot(n_plots,1,2);
%plot(t,y);
%ylabel('y');
%subplot(n_plots,1,3);
%plot(f,Pxx);
%ylabel('Pxx');
%subplot(n_plots,1,4);
%plot(f,Pyy);
%ylabel('Pyy');
%subplot(n_plots,1,5);
%plot(f,abs(Pyx));
%ylabel('abs Pyx');
%subplot(n_plots,1,6);
%plot(f,angle(Pyx));
%ylabel('angle Pyx');
% % calculate coherence
% Cyx=Pyx./sqrt(Pxx.*Pyy);
% calculate coherence
Pxx=zeros([N_f Q 1]);
for q=1:Q
Pxx(:,q)=Pxy(:,q,q);
end
Pyy=reshape(Pxx,[N_f 1 Q]);
Cxy=Pxy./sqrt(repmat(Pxx,[1 1 Q]).*repmat(Pyy,[1 Q 1]));
% separate out magnitude, phase
Cxy_mag=abs(Cxy);
Cxy_phase=unwrap(angle(Cxy));
% calc the sigmas
if conf_level>0
% calculate the transformed power, coherence magnitude
Pxx_xf=log10(Pxx);
Cxy_mag_xf=atanh(Cxy_mag);
% calculate the take-away-one spectra
Pxxs=zeros([N_f Q]);
PxxRK=zeros([N_f Q]);
for q=1:Q
Pxxs(:,q)=Pxys(:,q,q);
PxxRK(:,q)=PxyRK(:,q,q);
end
Pxys_tao=(repmat(PxyRK,[1 1 1 R K])-Pxys)/(R*K-1);
% calc the take-away-one coherence
Pxxs_tao=zeros([N_f Q 1 R K]);
for q=1:Q
Pxxs_tao(:,q,:,:,:)=Pxys_tao(:,q,q,:,:);
end
Pyys_tao=reshape(Pxxs_tao,[N_f 1 Q R K]);
Cxys_tao=Pxys_tao./sqrt(repmat(Pxxs_tao,[1 1 Q 1 1]).*...
repmat(Pyys_tao,[1 Q 1 1 1]));
% transform the take-away-one spectra, coherence
Pxxs_tao_xf=log10(Pxxs_tao);
Cxys_tao_mag=abs(Cxys_tao);
Cxys_tao_mag_xf=atanh(Cxys_tao_mag);
Cxys_tao_phase=angle(Cxys_tao);
% calculate the sigmas on the spectra
Pxxs_tao_xf_mean=mean(mean(Pxxs_tao_xf,5),4);
Pxx_xf_sigma=...
sqrt((R*K-1)/(R*K)*...
sum(sum((Pxxs_tao_xf-...
repmat(Pxxs_tao_xf_mean,[1 1 1 R K])).^2,5),4));
% calculate the coherence magnitude sigma
Cxys_tao_mag_xf_mean=mean(mean(Cxys_tao_mag_xf,5),4);
Cxy_mag_xf_sigma=...
sqrt((R*K-1)/(R*K)*...
sum(sum((Cxys_tao_mag_xf-...
repmat(Cxys_tao_mag_xf_mean,[1 1 1 R K])).^2,5),4));
% calculate the coherence phase sigma
Cxys_tao_hat=Cxys_tao./Cxys_tao_mag;
Cxys_tao_hat_mean=mean(mean(Cxys_tao_hat,5),4);
Cxy_phase_sigma=sqrt(2*(R*K-1)*(1-abs(Cxys_tao_hat_mean)));
% calculate the confidence intervals
ci_factor=tinv((1+conf_level)/2,R*K-1);
Pxx_ci(:,:,1)=10.^(Pxx_xf-ci_factor*Pxx_xf_sigma);
Pxx_ci(:,:,2)=10.^(Pxx_xf+ci_factor*Pxx_xf_sigma);
Cxy_mag_ci(:,:,:,1)=tanh(Cxy_mag_xf-ci_factor*Cxy_mag_xf_sigma);
Cxy_mag_ci(:,:,:,2)=tanh(Cxy_mag_xf+ci_factor*Cxy_mag_xf_sigma);
Cxy_phase_ci(:,:,:,1)=Cxy_phase-ci_factor*Cxy_phase_sigma;
Cxy_phase_ci(:,:,:,2)=Cxy_phase+ci_factor*Cxy_phase_sigma;
% assign the return values, returning sigmas
varargout={f ...
Pxx ...
Cxy_mag Cxy_phase ...
N_fft f_res_diam ...
Pxx_ci ...
Cxy_mag_ci ...
Cxy_phase_ci ...
Pxx_xf Pxx_xf_sigma ...
Cxy_mag_xf Cxy_mag_xf_sigma ...
Cxy_phase_sigma ...
Pxxs_tao ...
};
else
% assign the return values, w/o CIs, sigmas
varargout={f Pxx Cxy_mag Cxy_phase N_fft f_res_diam};
end