-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain.py
167 lines (148 loc) · 5.82 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import argparse
import math
import os
import pdb
import pprint
from distutils.util import strtobool
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
from loguru import logger as loguru_logger
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.plugins import DDPPlugin, DDPShardedPlugin
from pytorch_lightning.utilities import rank_zero_only
from src.config.default import get_cfg_defaults
from src.lightning.data import MultiSceneDataModule
from src.lightning.lightning_adamatcher import PL_AdaMatcher
from src.utils.misc import get_rank_zero_only_logger, setup_gpus
from src.utils.profiler import build_profiler
loguru_logger = get_rank_zero_only_logger(loguru_logger)
def parse_args():
# init a custom parser which will be added into pl.Trainer parser
# check documentation: https://pytorch-lightning.readthedocs.io/en/latest/common/trainer.html#trainer-flags
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("data_cfg_path", type=str, help="data config path")
parser.add_argument("main_cfg_path", type=str, help="main config path")
parser.add_argument("--exp_name", type=str, default="default_exp_name")
parser.add_argument("--batch_size", type=int, default=4, help="batch_size per gpu")
parser.add_argument("--num_workers", type=int, default=4)
parser.add_argument(
"--pin_memory",
type=lambda x: bool(strtobool(x)),
nargs="?",
default=True,
help="whether loading data to pinned memory or not",
)
parser.add_argument(
"--ckpt_path",
type=str,
default=None,
help="pretrained checkpoint path, helpful for using a pre-trained coarse-only AdaMatcher",
)
parser.add_argument(
"--disable_ckpt",
action="store_true",
help="disable checkpoint saving (useful for debugging).",
)
parser.add_argument(
"--profiler_name",
type=str,
default=None,
help="options: [inference, pytorch], or leave it unset",
)
parser.add_argument(
"--parallel_load_data",
action="store_true",
help="load datasets in with multiple processes.",
)
parser = pl.Trainer.add_argparse_args(parser)
return parser.parse_args()
def main():
# parse arguments
args = parse_args()
rank_zero_only(pprint.pprint)(vars(args))
# init default-cfg and merge it with the main- and data-cfg
config = get_cfg_defaults()
config.merge_from_file(args.main_cfg_path)
config.merge_from_file(args.data_cfg_path)
# pl.seed_everything(config.TRAINER.SEED) # reproducibility
# TODO: Use different seeds for each dataloader workers
# This is needed for data augmentation
# TensorBoard Logger
# logger = TensorBoardLogger(save_dir='./OUTPUT/densematching/tb_logs', name=args.exp_name, default_hp_metric=False)
logger = TensorBoardLogger(
save_dir="./OUTPUT/densematching",
name=args.exp_name,
default_hp_metric=False,
)
ckpt_dir = Path(logger.log_dir) / "checkpoints"
last_ckpt_path = str(
Path(logger.log_dir[:-1] + str(int(logger.log_dir[-1]) - 1))
/ "checkpoints/last.ckpt"
)
if os.path.exists(last_ckpt_path):
args.ckpt_path = last_ckpt_path
if args.ckpt_path is None:
pl.seed_everything(config.TRAINER.SEED) # reproducibility
else:
pl.seed_everything(np.random.randint(2**31)) # reproducibility
# scale lr and warmup-step automatically
# pdb.set_trace()
args.gpus = _n_gpus = setup_gpus(args.gpus)
config.TRAINER.WORLD_SIZE = _n_gpus * args.num_nodes
config.TRAINER.TRUE_BATCH_SIZE = config.TRAINER.WORLD_SIZE * args.batch_size
_scaling = config.TRAINER.TRUE_BATCH_SIZE / config.TRAINER.CANONICAL_BS
config.TRAINER.SCALING = _scaling
config.TRAINER.TRUE_LR = config.TRAINER.CANONICAL_LR * _scaling
config.TRAINER.WARMUP_STEP = math.floor(config.TRAINER.WARMUP_STEP / _scaling)
# lightning module
profiler = build_profiler(args.profiler_name)
model = PL_AdaMatcher(config, pretrained_ckpt=args.ckpt_path, profiler=profiler)
loguru_logger.info(f"AdaMatcher LightningModule initialized!")
# lightning data
data_module = MultiSceneDataModule(args, config)
loguru_logger.info(f"AdaMatcher DataModule initialized!")
# Callbacks
# TODO: update ModelCheckpoint to monitor multiple metrics
ckpt_callback = ModelCheckpoint(
monitor="auc@10",
verbose=True,
save_top_k=5,
mode="max",
save_last=True,
dirpath=str(ckpt_dir),
filename="{epoch}-{auc@5:.3f}-{auc@10:.3f}-{auc@20:.3f}",
)
lr_monitor = LearningRateMonitor(logging_interval="step")
callbacks = [lr_monitor]
if not args.disable_ckpt:
callbacks.append(ckpt_callback)
# Lightning Trainer
trainer = pl.Trainer.from_argparse_args(
args,
plugins=DDPPlugin(
find_unused_parameters=False, # True,
num_nodes=args.num_nodes,
# strategy="ddp_sharded",
sync_batchnorm=config.TRAINER.WORLD_SIZE > 0,
),
gradient_clip_val=config.TRAINER.GRADIENT_CLIPPING,
callbacks=callbacks,
logger=logger,
sync_batchnorm=config.TRAINER.WORLD_SIZE > 0,
replace_sampler_ddp=False, # use custom sampler
reload_dataloaders_every_epoch=False, # avoid repeated samples!
weights_summary="full",
resume_from_checkpoint=args.ckpt_path,
profiler=profiler,
# precision=16,
# auto_lr_find=True
)
loguru_logger.info(f"Trainer initialized!")
loguru_logger.info(f"Start training!")
trainer.fit(model, datamodule=data_module)
if __name__ == "__main__":
main()