-
Notifications
You must be signed in to change notification settings - Fork 117
/
engine.py
159 lines (138 loc) · 6.03 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Train and eval functions used in main.py
Mostly copy-paste from DETR (https://github.com/facebookresearch/detr).
"""
import math
import os
import sys
from typing import Iterable
import torch
import util.misc as utils
from util.misc import NestedTensor
import numpy as np
import time
import torchvision.transforms as standard_transforms
import cv2
class DeNormalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, tensor):
for t, m, s in zip(tensor, self.mean, self.std):
t.mul_(s).add_(m)
return tensor
def vis(samples, targets, pred, vis_dir, des=None):
'''
samples -> tensor: [batch, 3, H, W]
targets -> list of dict: [{'points':[], 'image_id': str}]
pred -> list: [num_preds, 2]
'''
gts = [t['point'].tolist() for t in targets]
pil_to_tensor = standard_transforms.ToTensor()
restore_transform = standard_transforms.Compose([
DeNormalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
standard_transforms.ToPILImage()
])
# draw one by one
for idx in range(samples.shape[0]):
sample = restore_transform(samples[idx])
sample = pil_to_tensor(sample.convert('RGB')).numpy() * 255
sample_gt = sample.transpose([1, 2, 0])[:, :, ::-1].astype(np.uint8).copy()
sample_pred = sample.transpose([1, 2, 0])[:, :, ::-1].astype(np.uint8).copy()
max_len = np.max(sample_gt.shape)
size = 2
# draw gt
for t in gts[idx]:
sample_gt = cv2.circle(sample_gt, (int(t[0]), int(t[1])), size, (0, 255, 0), -1)
# draw predictions
for p in pred[idx]:
sample_pred = cv2.circle(sample_pred, (int(p[0]), int(p[1])), size, (0, 0, 255), -1)
name = targets[idx]['image_id']
# save the visualized images
if des is not None:
cv2.imwrite(os.path.join(vis_dir, '{}_{}_gt_{}_pred_{}_gt.jpg'.format(int(name),
des, len(gts[idx]), len(pred[idx]))), sample_gt)
cv2.imwrite(os.path.join(vis_dir, '{}_{}_gt_{}_pred_{}_pred.jpg'.format(int(name),
des, len(gts[idx]), len(pred[idx]))), sample_pred)
else:
cv2.imwrite(
os.path.join(vis_dir, '{}_gt_{}_pred_{}_gt.jpg'.format(int(name), len(gts[idx]), len(pred[idx]))),
sample_gt)
cv2.imwrite(
os.path.join(vis_dir, '{}_gt_{}_pred_{}_pred.jpg'.format(int(name), len(gts[idx]), len(pred[idx]))),
sample_pred)
# the training routine
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, max_norm: float = 0):
model.train()
criterion.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
# iterate all training samples
for samples, targets in data_loader:
samples = samples.to(device)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
# forward
outputs = model(samples)
# calc the losses
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
# reduce all losses
loss_dict_reduced = utils.reduce_dict(loss_dict)
loss_dict_reduced_unscaled = {f'{k}_unscaled': v
for k, v in loss_dict_reduced.items()}
loss_dict_reduced_scaled = {k: v * weight_dict[k]
for k, v in loss_dict_reduced.items() if k in weight_dict}
losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
loss_value = losses_reduced_scaled.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
print(loss_dict_reduced)
sys.exit(1)
# backward
optimizer.zero_grad()
losses.backward()
if max_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
optimizer.step()
# update logger
metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
# the inference routine
@torch.no_grad()
def evaluate_crowd_no_overlap(model, data_loader, device, vis_dir=None):
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('class_error', utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
# run inference on all images to calc MAE
maes = []
mses = []
for samples, targets in data_loader:
samples = samples.to(device)
outputs = model(samples)
outputs_scores = torch.nn.functional.softmax(outputs['pred_logits'], -1)[:, :, 1][0]
outputs_points = outputs['pred_points'][0]
gt_cnt = targets[0]['point'].shape[0]
# 0.5 is used by default
threshold = 0.5
points = outputs_points[outputs_scores > threshold].detach().cpu().numpy().tolist()
predict_cnt = int((outputs_scores > threshold).sum())
# if specified, save the visualized images
if vis_dir is not None:
vis(samples, targets, [points], vis_dir)
# accumulate MAE, MSE
mae = abs(predict_cnt - gt_cnt)
mse = (predict_cnt - gt_cnt) * (predict_cnt - gt_cnt)
maes.append(float(mae))
mses.append(float(mse))
# calc MAE, MSE
mae = np.mean(maes)
mse = np.sqrt(np.mean(mses))
return mae, mse