-
-
Notifications
You must be signed in to change notification settings - Fork 46.1k
/
volume.py
567 lines (491 loc) · 18 KB
/
volume.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
"""
Find the volume of various shapes.
* https://en.wikipedia.org/wiki/Volume
* https://en.wikipedia.org/wiki/Spherical_cap
"""
from __future__ import annotations
from math import pi, pow # noqa: A004
def vol_cube(side_length: float) -> float:
"""
Calculate the Volume of a Cube.
>>> vol_cube(1)
1.0
>>> vol_cube(3)
27.0
>>> vol_cube(0)
0.0
>>> vol_cube(1.6)
4.096000000000001
>>> vol_cube(-1)
Traceback (most recent call last):
...
ValueError: vol_cube() only accepts non-negative values
"""
if side_length < 0:
raise ValueError("vol_cube() only accepts non-negative values")
return pow(side_length, 3)
def vol_spherical_cap(height: float, radius: float) -> float:
"""
Calculate the volume of the spherical cap.
>>> vol_spherical_cap(1, 2)
5.235987755982988
>>> vol_spherical_cap(1.6, 2.6)
16.621119532592402
>>> vol_spherical_cap(0, 0)
0.0
>>> vol_spherical_cap(-1, 2)
Traceback (most recent call last):
...
ValueError: vol_spherical_cap() only accepts non-negative values
>>> vol_spherical_cap(1, -2)
Traceback (most recent call last):
...
ValueError: vol_spherical_cap() only accepts non-negative values
"""
if height < 0 or radius < 0:
raise ValueError("vol_spherical_cap() only accepts non-negative values")
# Volume is 1/3 pi * height squared * (3 * radius - height)
return 1 / 3 * pi * pow(height, 2) * (3 * radius - height)
def vol_spheres_intersect(
radius_1: float, radius_2: float, centers_distance: float
) -> float:
r"""
Calculate the volume of the intersection of two spheres.
The intersection is composed by two spherical caps and therefore its volume is the
sum of the volumes of the spherical caps.
First, it calculates the heights :math:`(h_1, h_2)` of the spherical caps,
then the two volumes and it returns the sum.
The height formulas are
.. math::
h_1 = \frac{(radius_1 - radius_2 + centers\_distance)
\cdot (radius_1 + radius_2 - centers\_distance)}
{2 \cdot centers\_distance}
h_2 = \frac{(radius_2 - radius_1 + centers\_distance)
\cdot (radius_2 + radius_1 - centers\_distance)}
{2 \cdot centers\_distance}
if `centers_distance` is 0 then it returns the volume of the smallers sphere
:return: ``vol_spherical_cap`` (:math:`h_1`, :math:`radius_2`)
+ ``vol_spherical_cap`` (:math:`h_2`, :math:`radius_1`)
>>> vol_spheres_intersect(2, 2, 1)
21.205750411731103
>>> vol_spheres_intersect(2.6, 2.6, 1.6)
40.71504079052372
>>> vol_spheres_intersect(0, 0, 0)
0.0
>>> vol_spheres_intersect(-2, 2, 1)
Traceback (most recent call last):
...
ValueError: vol_spheres_intersect() only accepts non-negative values
>>> vol_spheres_intersect(2, -2, 1)
Traceback (most recent call last):
...
ValueError: vol_spheres_intersect() only accepts non-negative values
>>> vol_spheres_intersect(2, 2, -1)
Traceback (most recent call last):
...
ValueError: vol_spheres_intersect() only accepts non-negative values
"""
if radius_1 < 0 or radius_2 < 0 or centers_distance < 0:
raise ValueError("vol_spheres_intersect() only accepts non-negative values")
if centers_distance == 0:
return vol_sphere(min(radius_1, radius_2))
h1 = (
(radius_1 - radius_2 + centers_distance)
* (radius_1 + radius_2 - centers_distance)
/ (2 * centers_distance)
)
h2 = (
(radius_2 - radius_1 + centers_distance)
* (radius_2 + radius_1 - centers_distance)
/ (2 * centers_distance)
)
return vol_spherical_cap(h1, radius_2) + vol_spherical_cap(h2, radius_1)
def vol_spheres_union(
radius_1: float, radius_2: float, centers_distance: float
) -> float:
r"""
Calculate the volume of the union of two spheres that possibly intersect.
It is the sum of sphere :math:`A` and sphere :math:`B` minus their intersection.
First, it calculates the volumes :math:`(v_1, v_2)` of the spheres,
then the volume of the intersection :math:`i` and
it returns the sum :math:`v_1 + v_2 - i`.
If `centers_distance` is 0 then it returns the volume of the larger sphere
:return: ``vol_sphere`` (:math:`radius_1`) + ``vol_sphere`` (:math:`radius_2`)
- ``vol_spheres_intersect``
(:math:`radius_1`, :math:`radius_2`, :math:`centers\_distance`)
>>> vol_spheres_union(2, 2, 1)
45.814892864851146
>>> vol_spheres_union(1.56, 2.2, 1.4)
48.77802773671288
>>> vol_spheres_union(0, 2, 1)
Traceback (most recent call last):
...
ValueError: vol_spheres_union() only accepts non-negative values, non-zero radius
>>> vol_spheres_union('1.56', '2.2', '1.4')
Traceback (most recent call last):
...
TypeError: '<=' not supported between instances of 'str' and 'int'
>>> vol_spheres_union(1, None, 1)
Traceback (most recent call last):
...
TypeError: '<=' not supported between instances of 'NoneType' and 'int'
"""
if radius_1 <= 0 or radius_2 <= 0 or centers_distance < 0:
raise ValueError(
"vol_spheres_union() only accepts non-negative values, non-zero radius"
)
if centers_distance == 0:
return vol_sphere(max(radius_1, radius_2))
return (
vol_sphere(radius_1)
+ vol_sphere(radius_2)
- vol_spheres_intersect(radius_1, radius_2, centers_distance)
)
def vol_cuboid(width: float, height: float, length: float) -> float:
"""
Calculate the Volume of a Cuboid.
:return: multiple of `width`, `length` and `height`
>>> vol_cuboid(1, 1, 1)
1.0
>>> vol_cuboid(1, 2, 3)
6.0
>>> vol_cuboid(1.6, 2.6, 3.6)
14.976
>>> vol_cuboid(0, 0, 0)
0.0
>>> vol_cuboid(-1, 2, 3)
Traceback (most recent call last):
...
ValueError: vol_cuboid() only accepts non-negative values
>>> vol_cuboid(1, -2, 3)
Traceback (most recent call last):
...
ValueError: vol_cuboid() only accepts non-negative values
>>> vol_cuboid(1, 2, -3)
Traceback (most recent call last):
...
ValueError: vol_cuboid() only accepts non-negative values
"""
if width < 0 or height < 0 or length < 0:
raise ValueError("vol_cuboid() only accepts non-negative values")
return float(width * height * length)
def vol_cone(area_of_base: float, height: float) -> float:
r"""
| Calculate the Volume of a Cone.
| Wikipedia reference: https://en.wikipedia.org/wiki/Cone
:return: :math:`\frac{1}{3} \cdot area\_of\_base \cdot height`
>>> vol_cone(10, 3)
10.0
>>> vol_cone(1, 1)
0.3333333333333333
>>> vol_cone(1.6, 1.6)
0.8533333333333335
>>> vol_cone(0, 0)
0.0
>>> vol_cone(-1, 1)
Traceback (most recent call last):
...
ValueError: vol_cone() only accepts non-negative values
>>> vol_cone(1, -1)
Traceback (most recent call last):
...
ValueError: vol_cone() only accepts non-negative values
"""
if height < 0 or area_of_base < 0:
raise ValueError("vol_cone() only accepts non-negative values")
return area_of_base * height / 3.0
def vol_right_circ_cone(radius: float, height: float) -> float:
r"""
| Calculate the Volume of a Right Circular Cone.
| Wikipedia reference: https://en.wikipedia.org/wiki/Cone
:return: :math:`\frac{1}{3} \cdot \pi \cdot radius^2 \cdot height`
>>> vol_right_circ_cone(2, 3)
12.566370614359172
>>> vol_right_circ_cone(0, 0)
0.0
>>> vol_right_circ_cone(1.6, 1.6)
4.289321169701265
>>> vol_right_circ_cone(-1, 1)
Traceback (most recent call last):
...
ValueError: vol_right_circ_cone() only accepts non-negative values
>>> vol_right_circ_cone(1, -1)
Traceback (most recent call last):
...
ValueError: vol_right_circ_cone() only accepts non-negative values
"""
if height < 0 or radius < 0:
raise ValueError("vol_right_circ_cone() only accepts non-negative values")
return pi * pow(radius, 2) * height / 3.0
def vol_prism(area_of_base: float, height: float) -> float:
r"""
| Calculate the Volume of a Prism.
| Wikipedia reference: https://en.wikipedia.org/wiki/Prism_(geometry)
:return: :math:`V = B \cdot h`
>>> vol_prism(10, 2)
20.0
>>> vol_prism(11, 1)
11.0
>>> vol_prism(1.6, 1.6)
2.5600000000000005
>>> vol_prism(0, 0)
0.0
>>> vol_prism(-1, 1)
Traceback (most recent call last):
...
ValueError: vol_prism() only accepts non-negative values
>>> vol_prism(1, -1)
Traceback (most recent call last):
...
ValueError: vol_prism() only accepts non-negative values
"""
if height < 0 or area_of_base < 0:
raise ValueError("vol_prism() only accepts non-negative values")
return float(area_of_base * height)
def vol_pyramid(area_of_base: float, height: float) -> float:
r"""
| Calculate the Volume of a Pyramid.
| Wikipedia reference: https://en.wikipedia.org/wiki/Pyramid_(geometry)
:return: :math:`\frac{1}{3} \cdot B \cdot h`
>>> vol_pyramid(10, 3)
10.0
>>> vol_pyramid(1.5, 3)
1.5
>>> vol_pyramid(1.6, 1.6)
0.8533333333333335
>>> vol_pyramid(0, 0)
0.0
>>> vol_pyramid(-1, 1)
Traceback (most recent call last):
...
ValueError: vol_pyramid() only accepts non-negative values
>>> vol_pyramid(1, -1)
Traceback (most recent call last):
...
ValueError: vol_pyramid() only accepts non-negative values
"""
if height < 0 or area_of_base < 0:
raise ValueError("vol_pyramid() only accepts non-negative values")
return area_of_base * height / 3.0
def vol_sphere(radius: float) -> float:
r"""
| Calculate the Volume of a Sphere.
| Wikipedia reference: https://en.wikipedia.org/wiki/Sphere
:return: :math:`\frac{4}{3} \cdot \pi \cdot r^3`
>>> vol_sphere(5)
523.5987755982989
>>> vol_sphere(1)
4.1887902047863905
>>> vol_sphere(1.6)
17.15728467880506
>>> vol_sphere(0)
0.0
>>> vol_sphere(-1)
Traceback (most recent call last):
...
ValueError: vol_sphere() only accepts non-negative values
"""
if radius < 0:
raise ValueError("vol_sphere() only accepts non-negative values")
# Volume is 4/3 * pi * radius cubed
return 4 / 3 * pi * pow(radius, 3)
def vol_hemisphere(radius: float) -> float:
r"""
| Calculate the volume of a hemisphere
| Wikipedia reference: https://en.wikipedia.org/wiki/Hemisphere
| Other references: https://www.cuemath.com/geometry/hemisphere
:return: :math:`\frac{2}{3} \cdot \pi \cdot radius^3`
>>> vol_hemisphere(1)
2.0943951023931953
>>> vol_hemisphere(7)
718.377520120866
>>> vol_hemisphere(1.6)
8.57864233940253
>>> vol_hemisphere(0)
0.0
>>> vol_hemisphere(-1)
Traceback (most recent call last):
...
ValueError: vol_hemisphere() only accepts non-negative values
"""
if radius < 0:
raise ValueError("vol_hemisphere() only accepts non-negative values")
# Volume is radius cubed * pi * 2/3
return pow(radius, 3) * pi * 2 / 3
def vol_circular_cylinder(radius: float, height: float) -> float:
r"""
| Calculate the Volume of a Circular Cylinder.
| Wikipedia reference: https://en.wikipedia.org/wiki/Cylinder
:return: :math:`\pi \cdot radius^2 \cdot height`
>>> vol_circular_cylinder(1, 1)
3.141592653589793
>>> vol_circular_cylinder(4, 3)
150.79644737231007
>>> vol_circular_cylinder(1.6, 1.6)
12.867963509103795
>>> vol_circular_cylinder(0, 0)
0.0
>>> vol_circular_cylinder(-1, 1)
Traceback (most recent call last):
...
ValueError: vol_circular_cylinder() only accepts non-negative values
>>> vol_circular_cylinder(1, -1)
Traceback (most recent call last):
...
ValueError: vol_circular_cylinder() only accepts non-negative values
"""
if height < 0 or radius < 0:
raise ValueError("vol_circular_cylinder() only accepts non-negative values")
# Volume is radius squared * height * pi
return pow(radius, 2) * height * pi
def vol_hollow_circular_cylinder(
inner_radius: float, outer_radius: float, height: float
) -> float:
"""
Calculate the Volume of a Hollow Circular Cylinder.
>>> vol_hollow_circular_cylinder(1, 2, 3)
28.274333882308138
>>> vol_hollow_circular_cylinder(1.6, 2.6, 3.6)
47.50088092227767
>>> vol_hollow_circular_cylinder(-1, 2, 3)
Traceback (most recent call last):
...
ValueError: vol_hollow_circular_cylinder() only accepts non-negative values
>>> vol_hollow_circular_cylinder(1, -2, 3)
Traceback (most recent call last):
...
ValueError: vol_hollow_circular_cylinder() only accepts non-negative values
>>> vol_hollow_circular_cylinder(1, 2, -3)
Traceback (most recent call last):
...
ValueError: vol_hollow_circular_cylinder() only accepts non-negative values
>>> vol_hollow_circular_cylinder(2, 1, 3)
Traceback (most recent call last):
...
ValueError: outer_radius must be greater than inner_radius
>>> vol_hollow_circular_cylinder(0, 0, 0)
Traceback (most recent call last):
...
ValueError: outer_radius must be greater than inner_radius
"""
# Volume - (outer_radius squared - inner_radius squared) * pi * height
if inner_radius < 0 or outer_radius < 0 or height < 0:
raise ValueError(
"vol_hollow_circular_cylinder() only accepts non-negative values"
)
if outer_radius <= inner_radius:
raise ValueError("outer_radius must be greater than inner_radius")
return pi * (pow(outer_radius, 2) - pow(inner_radius, 2)) * height
def vol_conical_frustum(height: float, radius_1: float, radius_2: float) -> float:
"""
| Calculate the Volume of a Conical Frustum.
| Wikipedia reference: https://en.wikipedia.org/wiki/Frustum
>>> vol_conical_frustum(45, 7, 28)
48490.482608158454
>>> vol_conical_frustum(1, 1, 2)
7.330382858376184
>>> vol_conical_frustum(1.6, 2.6, 3.6)
48.7240076620753
>>> vol_conical_frustum(0, 0, 0)
0.0
>>> vol_conical_frustum(-2, 2, 1)
Traceback (most recent call last):
...
ValueError: vol_conical_frustum() only accepts non-negative values
>>> vol_conical_frustum(2, -2, 1)
Traceback (most recent call last):
...
ValueError: vol_conical_frustum() only accepts non-negative values
>>> vol_conical_frustum(2, 2, -1)
Traceback (most recent call last):
...
ValueError: vol_conical_frustum() only accepts non-negative values
"""
# Volume is 1/3 * pi * height *
# (radius_1 squared + radius_2 squared + radius_1 * radius_2)
if radius_1 < 0 or radius_2 < 0 or height < 0:
raise ValueError("vol_conical_frustum() only accepts non-negative values")
return (
1
/ 3
* pi
* height
* (pow(radius_1, 2) + pow(radius_2, 2) + radius_1 * radius_2)
)
def vol_torus(torus_radius: float, tube_radius: float) -> float:
r"""
| Calculate the Volume of a Torus.
| Wikipedia reference: https://en.wikipedia.org/wiki/Torus
:return: :math:`2 \pi^2 \cdot torus\_radius \cdot tube\_radius^2`
>>> vol_torus(1, 1)
19.739208802178716
>>> vol_torus(4, 3)
710.6115168784338
>>> vol_torus(3, 4)
947.4820225045784
>>> vol_torus(1.6, 1.6)
80.85179925372404
>>> vol_torus(0, 0)
0.0
>>> vol_torus(-1, 1)
Traceback (most recent call last):
...
ValueError: vol_torus() only accepts non-negative values
>>> vol_torus(1, -1)
Traceback (most recent call last):
...
ValueError: vol_torus() only accepts non-negative values
"""
if torus_radius < 0 or tube_radius < 0:
raise ValueError("vol_torus() only accepts non-negative values")
return 2 * pow(pi, 2) * torus_radius * pow(tube_radius, 2)
def vol_icosahedron(tri_side: float) -> float:
"""
| Calculate the Volume of an Icosahedron.
| Wikipedia reference: https://en.wikipedia.org/wiki/Regular_icosahedron
>>> from math import isclose
>>> isclose(vol_icosahedron(2.5), 34.088984228514256)
True
>>> isclose(vol_icosahedron(10), 2181.694990624912374)
True
>>> isclose(vol_icosahedron(5), 272.711873828114047)
True
>>> isclose(vol_icosahedron(3.49), 92.740688412033628)
True
>>> vol_icosahedron(0)
0.0
>>> vol_icosahedron(-1)
Traceback (most recent call last):
...
ValueError: vol_icosahedron() only accepts non-negative values
>>> vol_icosahedron(-0.2)
Traceback (most recent call last):
...
ValueError: vol_icosahedron() only accepts non-negative values
"""
if tri_side < 0:
raise ValueError("vol_icosahedron() only accepts non-negative values")
return tri_side**3 * (3 + 5**0.5) * 5 / 12
def main():
"""Print the Results of Various Volume Calculations."""
print("Volumes:")
print(f"Cube: {vol_cube(2) = }") # = 8
print(f"Cuboid: {vol_cuboid(2, 2, 2) = }") # = 8
print(f"Cone: {vol_cone(2, 2) = }") # ~= 1.33
print(f"Right Circular Cone: {vol_right_circ_cone(2, 2) = }") # ~= 8.38
print(f"Prism: {vol_prism(2, 2) = }") # = 4
print(f"Pyramid: {vol_pyramid(2, 2) = }") # ~= 1.33
print(f"Sphere: {vol_sphere(2) = }") # ~= 33.5
print(f"Hemisphere: {vol_hemisphere(2) = }") # ~= 16.75
print(f"Circular Cylinder: {vol_circular_cylinder(2, 2) = }") # ~= 25.1
print(f"Torus: {vol_torus(2, 2) = }") # ~= 157.9
print(f"Conical Frustum: {vol_conical_frustum(2, 2, 4) = }") # ~= 58.6
print(f"Spherical cap: {vol_spherical_cap(1, 2) = }") # ~= 5.24
print(f"Spheres intersetion: {vol_spheres_intersect(2, 2, 1) = }") # ~= 21.21
print(f"Spheres union: {vol_spheres_union(2, 2, 1) = }") # ~= 45.81
print(
f"Hollow Circular Cylinder: {vol_hollow_circular_cylinder(1, 2, 3) = }"
) # ~= 28.3
print(f"Icosahedron: {vol_icosahedron(2.5) = }") # ~=34.09
if __name__ == "__main__":
main()