-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalster_analysis.py
140 lines (113 loc) · 5.91 KB
/
alster_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#%%
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime, timedelta
import seaborn as sns
import os
import scipy
import matplotlib.dates as mdates
from matplotlib.dates import DateFormatter
#%%
df_boats = pd.read_csv('C:/Users/torbj/OneDrive/Geo_Oze/4Semester/63-620, WissenschaftlichesArbeiten/Projektarbeit/Image_Download_Copy/resampled/webcam_data20220823_resampled.csv',sep=';')
df_boats['datetime'] = pd.to_datetime(df_boats['datetime'])
df_boats= df_boats.set_index('datetime')
df_wetter = pd.read_csv('C:/Users/torbj/OneDrive/Geo_Oze/4Semester/63-620, WissenschaftlichesArbeiten/Projektarbeit/Daten_UniHH/Wettermast/Kagel3/wettermast_export_dataframe.csv',sep=';')
df_wetter['timesteps'] = pd.to_datetime(df_wetter['timesteps'])
start_date = datetime(2022,8,23,0,0,0)
end_date = datetime(2022,8,23,23,50,0)
date_mask = (df_wetter['timesteps'] >= start_date) & (df_wetter['timesteps'] <= end_date)
df_wetter = df_wetter.loc[date_mask]
df_wetter.astype({'sunshine_duration': 'float64'}).dtypes
df_wetter = df_wetter.set_index('timesteps')
sns.regplot(x=df_wetter['sunshine_duration'], y=df_boats["boats_polygon"])
# plt.plot(df_wetter['temperature'])
# plt.plot(df_boats['boats_polygon'])
#%%
#Boats daily means:
os.chdir('C:/Users/torbj/OneDrive/Geo_Oze/4Semester/63-620, WissenschaftlichesArbeiten/Projektarbeit/Image_Download_Copy/resampled')
filelist = os.listdir()
boats_means = []
boats_max =[]
start_date_list =[]
format = '%Y-%m-%d %H:%M:%S'
for element in filelist:
df_boats = pd.read_csv(element,sep=';')
df_boats['datetime'] =pd.to_datetime(df_boats['datetime'],format=format)
start_date_list.append(df_boats['datetime'][0].date())
if start_date_list[len(start_date_list)-1] > datetime(2022,8,31,0,0,0).date():
break
df_boats= df_boats.set_index(pd.DatetimeIndex(df_boats['datetime']))
df_boats_day = df_boats.between_time('08:00','21:00')
boats_means.append(df_boats_day['boats'].mean())
boats_max.append(max(df_boats_day['boats']))
#Weather daily means
#!! sunshine duration aufsummieren und gegen plote plotten
df_wetter = pd.read_csv('C:/Users/torbj/OneDrive/Geo_Oze/4Semester/63-620, WissenschaftlichesArbeiten/Projektarbeit/Daten_UniHH/Wettermast/Kagel3/wettermast_export_dataframe.csv',sep=';')
df_wetter['timesteps'] = pd.to_datetime(df_wetter['timesteps'])
weather_means = []
weather_max =[]
weather_sums = []
end_date_list = []
start_time = datetime.strptime('0700','%H%M').time()
weather_key = 'sunshine_duration'
for i in range(len(start_date_list)-1):
start_date_list[i] = datetime.combine(start_date_list[i], start_time)
end_date_list.append(start_date_list[i] + timedelta(hours=14))
date_mask = (df_wetter['timesteps'] >= start_date_list[i]) & (df_wetter['timesteps'] <= end_date_list[i])
df_wetter_date = df_wetter.loc[date_mask]
weather_means.append(df_wetter_date[weather_key].mean())
weather_max.append(max(df_wetter_date[weather_key]))
weather_sums.append(np.sum(df_wetter_date[weather_key]))
# plt.plot(boats_means)
# plt.plot(weather_means)
#manuelle datums-selektion
#!! Listen nochmal überarbeiten, mit neuem Kalendarplot
peak_days = (0,6,7,14,15,16,20,21,22)
plateau_days = (3,4,5,9,11,18,19)
weather_list = []
boats_list =[]
weather_list.append([weather_sums[i] for i in peak_days])
boats_list.append([boats_means[i] for i in peak_days])
weather_list = weather_list[0]
boats_list = boats_list[0]
r_square, p = scipy.stats.pearsonr(weather_list, boats_list)
fig, ax = plt.subplots(dpi=200)
ax.set_xlim(np.floor(min(weather_list)),np.ceil(max(weather_list)))
ax.set_ylim(0,20)
ax.set_yticks(range(0,21,2))
ax = sns.regplot(x=weather_list, y=boats_list,marker="x",color='black',line_kws={"color":"r","alpha":0.7,"lw":3},truncate=False)
# fig.suptitle("Peakdays",fontsize=14)
ax.set_xlabel("daily total sunshine duration [min]")
ax.set_ylabel('daily boat means')
ax.text(0.05,0.9,"R²="+"{:.3f}".format(r_square),fontsize=14,ha='left',va='center',transform = ax.transAxes)
ax.grid()
# plt.tight_layout()
plt.show()
#%%
#Wetterstationen Vergleich
df_wettermast = pd.read_csv('C:/Users/torbj/OneDrive/Geo_Oze/4Semester/63-620, WissenschaftlichesArbeiten/Projektarbeit/Daten_UniHH/Wettermast/Kagel3/wettermast_export_dataframe.csv',sep=';')
df_wettermast['timesteps'] = pd.to_datetime(df_wetter['timesteps'])
df_stadthaus = pd.read_csv('C:/Users/torbj/OneDrive/Geo_Oze/4Semester/63-620, WissenschaftlichesArbeiten/Projektarbeit/Daten_UniHH/Stadthausbrücke/Kagel4/wettermast_export_dataframe.csv',sep=';')
df_stadthaus['timesteps'] = pd.to_datetime(df_wetter['timesteps'])
start_date = datetime(2022,8,4,0,0,0)
end_date = datetime(2022,8,7,0,0,0)
weather_key = 'wind'
date_mask = (df_wettermast['timesteps'] >= start_date) & (df_wettermast['timesteps'] <= end_date)
df_wettermast = df_wettermast.loc[date_mask]
date_mask = (df_stadthaus['timesteps'] >= start_date) & (df_stadthaus['timesteps'] <= end_date)
df_stadthaus = df_stadthaus.loc[date_mask]
df_stadthaus = df_stadthaus.set_index('timesteps')
df_wettermast = df_wettermast.set_index('timesteps')
r_square, p = scipy.stats.pearsonr(df_wettermast[weather_key], df_stadthaus[weather_key])
fig,ax = plt.subplots(dpi=200)
# ax = sns.regplot(x=df_wettermast[weather_key], y=df_stadthaus[weather_key], scatter_kws = {"color": "gray", "alpha": 0.2},line_kws={"color":"r","alpha":0.7,"lw":3},truncate=False)
# ax.text(0.05,0.9,"R²="+"{:.3f}".format(r_square),fontsize=14,ha='left',va='center',transform = ax.transAxes)
ax.plot(df_wettermast['precipitation_amount'],color='darkcyan',label='Wettermast')
ax.plot(df_stadthaus['precipitation_amount'],color='coral',label='Stadthausbrücke')
ax.xaxis.set_major_formatter(mdates.DateFormatter("%d.%m\n%H:%M"))
ax.grid()
ax.set_xlabel('Wettermast, wind [m/s]')
ax.set_ylabel('Stadthausbrücke, wind [m/s]')
plt.legend()
plt.show()