-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathkfac.py
210 lines (196 loc) · 8.28 KB
/
kfac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import torch
import torch.nn.functional as F
from torch.optim.optimizer import Optimizer
class KFAC(Optimizer):
def __init__(self, net, eps, sua=False, pi=False, update_freq=1,
alpha=1.0, constraint_norm=False):
""" K-FAC Preconditionner for Linear and Conv2d layers.
Computes the K-FAC of the second moment of the gradients.
It works for Linear and Conv2d layers and silently skip other layers.
Args:
net (torch.nn.Module): Network to precondition.
eps (float): Tikhonov regularization parameter for the inverses.
sua (bool): Applies SUA approximation.
pi (bool): Computes pi correction for Tikhonov regularization.
update_freq (int): Perform inverses every update_freq updates.
alpha (float): Running average parameter (if == 1, no r. ave.).
constraint_norm (bool): Scale the gradients by the squared
fisher norm.
"""
self.eps = eps
self.sua = sua
self.pi = pi
self.update_freq = update_freq
self.alpha = alpha
self.constraint_norm = constraint_norm
self.params = []
self._fwd_handles = []
self._bwd_handles = []
self._iteration_counter = 0
for mod in net.modules():
mod_class = mod.__class__.__name__
if mod_class in ['Linear', 'Conv2d']:
handle = mod.register_forward_pre_hook(self._save_input)
self._fwd_handles.append(handle)
handle = mod.register_full_backward_hook(self._save_grad_output)
self._bwd_handles.append(handle)
params = [mod.weight]
if mod.bias is not None:
params.append(mod.bias)
d = {'params': params, 'mod': mod, 'layer_type': mod_class}
self.params.append(d)
super(KFAC, self).__init__(self.params, {})
def step(self, update_stats=True, update_params=True):
"""Performs one step of preconditioning."""
fisher_norm = 0.
for group in self.param_groups:
# Getting parameters
if len(group['params']) == 2:
weight, bias = group['params']
else:
weight = group['params'][0]
bias = None
state = self.state[weight]
# Update convariances and inverses
if update_stats:
if self._iteration_counter % self.update_freq == 0:
self._compute_covs(group, state)
ixxt, iggt = self._inv_covs(state['xxt'], state['ggt'],
state['num_locations'])
state['ixxt'] = ixxt
state['iggt'] = iggt
else:
if self.alpha != 1:
self._compute_covs(group, state)
if update_params:
# Preconditionning
gw, gb = self._precond(weight, bias, group, state)
# Updating gradients
if self.constraint_norm:
fisher_norm += (weight.grad * gw).sum()
weight.grad.data = gw
if bias is not None:
if self.constraint_norm:
fisher_norm += (bias.grad * gb).sum()
bias.grad.data = gb
# Cleaning
if 'x' in self.state[group['mod']]:
del self.state[group['mod']]['x']
if 'gy' in self.state[group['mod']]:
del self.state[group['mod']]['gy']
# Eventually scale the norm of the gradients
if update_params and self.constraint_norm:
scale = (1. / fisher_norm) ** 0.5
for group in self.param_groups:
for param in group['params']:
param.grad.data *= scale
if update_stats:
self._iteration_counter += 1
def _save_input(self, mod, i):
"""Saves input of layer to compute covariance."""
if mod.training:
self.state[mod]['x'] = i[0]
def _save_grad_output(self, mod, grad_input, grad_output):
"""Saves grad on output of layer to compute covariance."""
if mod.training:
self.state[mod]['gy'] = grad_output[0] * grad_output[0].size(0)
def _precond(self, weight, bias, group, state):
"""Applies preconditioning."""
if group['layer_type'] == 'Conv2d' and self.sua:
return self._precond_sua(weight, bias, group, state)
ixxt = state['ixxt']
iggt = state['iggt']
g = weight.grad.data
s = g.shape
if group['layer_type'] == 'Conv2d':
g = g.contiguous().view(s[0], s[1]*s[2]*s[3])
if bias is not None:
gb = bias.grad.data
g = torch.cat([g, gb.view(gb.shape[0], 1)], dim=1)
g = torch.mm(torch.mm(iggt, g), ixxt)
if group['layer_type'] == 'Conv2d':
g /= state['num_locations']
if bias is not None:
gb = g[:, -1].contiguous().view(*bias.shape)
g = g[:, :-1]
else:
gb = None
g = g.contiguous().view(*s)
return g, gb
def _precond_sua(self, weight, bias, group, state):
"""Preconditioning for KFAC SUA."""
ixxt = state['ixxt']
iggt = state['iggt']
g = weight.grad.data
s = g.shape
mod = group['mod']
g = g.permute(1, 0, 2, 3).contiguous()
if bias is not None:
gb = bias.grad.view(1, -1, 1, 1).expand(1, -1, s[2], s[3])
g = torch.cat([g, gb], dim=0)
g = torch.mm(ixxt, g.contiguous().view(-1, s[0]*s[2]*s[3]))
g = g.view(-1, s[0], s[2], s[3]).permute(1, 0, 2, 3).contiguous()
g = torch.mm(iggt, g.view(s[0], -1)).view(s[0], -1, s[2], s[3])
g /= state['num_locations']
if bias is not None:
gb = g[:, -1, s[2]//2, s[3]//2]
g = g[:, :-1]
else:
gb = None
return g, gb
def _compute_covs(self, group, state):
"""Computes the covariances."""
mod = group['mod']
x = self.state[group['mod']]['x']
gy = self.state[group['mod']]['gy']
# Computation of xxt
if group['layer_type'] == 'Conv2d':
if not self.sua:
x = F.unfold(x, mod.kernel_size, padding=mod.padding,
stride=mod.stride)
else:
x = x.view(x.shape[0], x.shape[1], -1)
x = x.data.permute(1, 0, 2).contiguous().view(x.shape[1], -1)
else:
x = x.data.t()
if mod.bias is not None:
ones = torch.ones_like(x[:1])
x = torch.cat([x, ones], dim=0)
if self._iteration_counter == 0:
state['xxt'] = torch.mm(x, x.t()) / float(x.shape[1])
else:
state['xxt'].addmm_(mat1=x, mat2=x.t(),
beta=(1. - self.alpha),
alpha=self.alpha / float(x.shape[1]))
# Computation of ggt
if group['layer_type'] == 'Conv2d':
gy = gy.data.permute(1, 0, 2, 3)
state['num_locations'] = gy.shape[2] * gy.shape[3]
gy = gy.contiguous().view(gy.shape[0], -1)
else:
gy = gy.data.t()
state['num_locations'] = 1
if self._iteration_counter == 0:
state['ggt'] = torch.mm(gy, gy.t()) / float(gy.shape[1])
else:
state['ggt'].addmm_(mat1=gy, mat2=gy.t(),
beta=(1. - self.alpha),
alpha=self.alpha / float(gy.shape[1]))
def _inv_covs(self, xxt, ggt, num_locations):
"""Inverses the covariances."""
# Computes pi
pi = 1.0
if self.pi:
tx = torch.trace(xxt) * ggt.shape[0]
tg = torch.trace(ggt) * xxt.shape[0]
pi = (tx / tg)
# Regularizes and inverse
eps = self.eps / num_locations
diag_xxt = xxt.new(xxt.shape[0]).fill_((eps * pi) ** 0.5)
diag_ggt = ggt.new(ggt.shape[0]).fill_((eps / pi) ** 0.5)
ixxt = (xxt + torch.diag(diag_xxt)).inverse()
iggt = (ggt + torch.diag(diag_ggt)).inverse()
return ixxt, iggt
def __del__(self):
for handle in self._fwd_handles + self._bwd_handles:
handle.remove()