-
Notifications
You must be signed in to change notification settings - Fork 162
/
Copy pathpretrain_roberta_mlm_data_gen.py
227 lines (190 loc) · 8.46 KB
/
pretrain_roberta_mlm_data_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#! -*- coding: utf-8 -*-
# 预训练语料构建,这里实现的mlm任务的,NSP和SOP未使用
# 方案:一直动态生成文件,超过最大保存数目时候sleep,
# 当训练速度超过文件生成速度时候,可开启多个数据生成脚本
import numpy as np
from bert4torch.tokenizers import Tokenizer
import json, glob, re
from tqdm import tqdm
import collections
import gc
import shelve
import time
import os
import random
import jieba
jieba.initialize()
class TrainingDataset(object):
"""预训练数据集生成器
"""
def __init__(self, tokenizer, sequence_length=512):
"""参数说明:
tokenizer必须是bert4keras自带的tokenizer类;
"""
self.tokenizer = tokenizer
self.sequence_length = sequence_length
self.token_pad_id = tokenizer._token_pad_id
self.token_cls_id = tokenizer._token_start_id
self.token_sep_id = tokenizer._token_end_id
self.token_mask_id = tokenizer._token_mask_id
self.vocab_size = tokenizer._vocab_size
def padding(self, sequence, padding_value=None):
"""对单个序列进行补0
"""
if padding_value is None:
padding_value = self.token_pad_id
sequence = sequence[:self.sequence_length]
padding_length = self.sequence_length - len(sequence)
return sequence + [padding_value] * padding_length
def sentence_process(self, text):
"""单个文本的处理函数,返回处理后的instance
"""
raise NotImplementedError
def paragraph_process(self, texts, starts, ends, paddings):
"""单个段落(多个文本)的处理函数
说明:texts是单句组成的list;starts是每个instance的起始id;
ends是每个instance的终止id;paddings是每个instance的填充id。
做法:不断塞句子,直到长度最接近sequence_length,然后padding。
"""
instances, instance = [], [[start] for start in starts]
for text in texts:
# 处理单个句子
sub_instance = self.sentence_process(text)
sub_instance = [i[:self.sequence_length - 2] for i in sub_instance]
new_length = len(instance[0]) + len(sub_instance[0])
# 如果长度即将溢出
if new_length > self.sequence_length - 1:
# 插入终止符,并padding
complete_instance = []
for item, end, pad in zip(instance, ends, paddings):
item.append(end)
item = self.padding(item, pad)
complete_instance.append(item)
# 存储结果,并构建新样本
instances.append(complete_instance)
instance = [[start] for start in starts]
# 样本续接
for item, sub_item in zip(instance, sub_instance):
item.extend(sub_item)
# 插入终止符,并padding
complete_instance = []
for item, end, pad in zip(instance, ends, paddings):
item.append(end)
item = self.padding(item, pad)
complete_instance.append(item)
# 存储最后的instance
instances.append(complete_instance)
return instances
def serialize(self, instances, db, count):
"""写入到文件
"""
for instance in instances:
input_ids, masked_lm_labels = instance[0], instance[1]
assert len(input_ids) <= sequence_length
features = collections.OrderedDict()
features["input_ids"] = input_ids
features["masked_lm_labels"] = masked_lm_labels
db[str(count)] = features
count += 1
return count
def process(self, corpus, record_name):
"""处理输入语料(corpus)
"""
count = 0
db = shelve.open(record_name)
for texts in corpus:
instances = self.paragraph_process(texts)
count = self.serialize(instances, db, count)
db.close()
del instances
gc.collect()
# 记录对应的文件名和样本量
record_info = {"filename": record_name, "samples_num": count}
json.dump(record_info, open(record_name + ".json", "w", encoding="utf-8"))
print('write %s examples into %s' % (count, record_name))
class TrainingDatasetRoBERTa(TrainingDataset):
"""预训练数据集生成器(RoBERTa模式)
"""
def __init__(self, tokenizer, word_segment, mask_rate=0.15, sequence_length=512):
"""参数说明:
tokenizer必须是bert4torch自带的tokenizer类;
word_segment是任意分词函数。
"""
super(TrainingDatasetRoBERTa, self).__init__(tokenizer, sequence_length)
self.word_segment = word_segment
self.mask_rate = mask_rate
def token_process(self, token_id):
"""以80%的几率替换为[MASK],以10%的几率保持不变,
以10%的几率替换为一个随机token。
"""
rand = np.random.random()
if rand <= 0.8:
return self.token_mask_id
elif rand <= 0.9:
return token_id
else:
return np.random.randint(0, self.vocab_size)
def sentence_process(self, text):
"""单个文本的处理函数
流程:分词,然后转id,按照mask_rate构建全词mask的序列, 来指定哪些token是否要被mask
return
token_ids: 部分token_id已经被 "[MASK]/不变/随机" 替换之后的token_ids
mask_ids: 指示被替换位置的真实ids, 未被替换的位置为0,被替换的位置为替换前的id
"""
words = self.word_segment(text)
rands = np.random.random(len(words))
token_ids, mask_ids = [], []
for rand, word in zip(rands, words):
word_tokens = self.tokenizer.tokenize(text=word)[1:-1]
word_token_ids = self.tokenizer.tokens_to_ids(word_tokens)
if rand < self.mask_rate:
word_mask_ids = [self.token_process(i) for i in word_token_ids]
token_ids.extend(word_mask_ids)
mask_ids.extend(word_token_ids)
else:
token_ids.extend(word_token_ids)
word_mask_ids = [0] * len(word_tokens)
mask_ids.extend(word_mask_ids)
return [token_ids, mask_ids]
def paragraph_process(self, texts):
"""给原方法补上starts、ends、paddings
"""
starts = [self.token_cls_id, 0]
ends = [self.token_sep_id, 0]
paddings = [self.token_pad_id, 0]
return super(TrainingDatasetRoBERTa, self).paragraph_process(texts, starts, ends, paddings)
if __name__ == '__main__':
sequence_length = 512 # 文本长度
max_file_num = 40 # 最大保存的文件个数
dict_path = 'E:/data/pretrain_ckpt/bert/google@chinese_L-12_H-768_A-12/vocab.txt' # 字典文件
dir_training_data = 'E:/Github/bert4torch/data/pretrain' # 保存的文件目录
dir_corpus = 'F:/data/corpus/pretrain' # 读入的语料地址
tokenizer = Tokenizer(dict_path, do_lower_case=True)
def some_texts():
'''挑选语料
'''
files_corpus = glob.glob(f'{dir_corpus}/*/*') # 根据目录结构自行调整
file_corpus = random.choice(files_corpus) # 随机挑选一篇文章
count, texts = 0, []
with open(file_corpus, encoding='utf-8') as f:
for l in tqdm(f, desc=f'Load data from {file_corpus}'):
l = l.strip()
texts.extend(re.findall(u'.*?[\n。]+', l))
count += 1
if count == 10: # 10篇文章合在一起再处理
yield texts
count, texts = 0, []
if texts:
yield texts
def word_segment(text):
return jieba.lcut(text)
TD = TrainingDatasetRoBERTa(tokenizer, word_segment, sequence_length=sequence_length)
while True:
train_files = [file for file in os.listdir(dir_training_data) if ('train_' in file) and ('dat' in file)]
# 当保存的训练文件未达到指定数量时
if len(train_files) < max_file_num:
record_name = f'{dir_training_data}/train_'+ time.strftime('%Y%m%d%H%M%S', time.localtime())
TD.process(corpus=some_texts(), record_name=record_name)
time.sleep(1) # 可不加,这里是防止生成文件名一样
else:
time.sleep(300)