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I. INTRODUCTION

The rise of machine learning has resulted in an increasing
number of everyday-life intelligent applications. As such,
machine learning has been used in personal assistants [1],
recommendation in social media [2] and music [3], and
cybersecurity [4]. However, accurate machine learning models
require large training datasets [5], [6], which can often be
hard to obtain and store due to recent privacy legislation [7].
Federated learning [8] has become a promising alternative
and widely adopted tool for crowd sourcing computationally
expensive machine learning operations, reportedly having been
used for training numerous industrial machine learning models
[9]–[13]. Federated learning ensures the protection of privacy,
as the user’s data will not leave their device during training.

With federated learning, in contrast to centralized machine
learning, training takes place on the end-users’ personal de-
vices, which are often referred to edge devices or nodes.
The resulting trained models are communicated to a central
server, which will combine these models using some prede-
fined aggregation method. Such an approach offers several
advantages. First, as aforementioned, by only communicating
the trained models to the central server, the user’s privacy is
respected, while obtaining comparable performance compared
to centralized machine learning [14]. While there exist attacks
in which training data can be reconstructed based on the
gradient of the trained models [15], [16], defense mechanisms
against this attack have been proposed [17], [18]. Secondly,
federated learning improves communication efficiency. As all
nodes locally train on their own data, their data does not need
to be communicated to the central server. It has been shown
that this significantly reduces communication costs [8].

However, federated learning suffers from some disadvan-
tages. For example, while federated learning enjoys significant
improvement in terms of communication costs compared to
centralized learning, the central server still aggregates the
models of all participating nodes, inducing heavy communi-
cation costs and a potential bottleneck in the learning process
affecting the overall convergence time [19]. Secondly, the
scalability in terms of the amount of nodes heavily varies
depending on the aggregation method. In secure and robust
federated learning aggregation methods, the incorporation of

additional nodes during aggregation may result in significantly
increased computational effort for the central server [20].
Thirdly, the central server performing the aggregation poses
as a single-point of failure [21]. Downtime of the central
server will disrupt the overall model training process, which is
especially inconvenient in architectures where edge devices are
awaiting the aggregated model before starting the next training
epoch. Decentralized learning, also commonly referred to
as decentralized federated learning or gossip learning, is a
technique aiming to resolve these issues. In decentralized
learning, there is no central server performing the aggregation
and the edge devices form a distributed network, e.g. a peer-to-
peer network, in which each node individually performs the
aggregation (see Figure 1). While the information available
during aggregation is more limited relative to federated learn-
ing, it has been shown that decentralized learning has the po-
tential to obtain similar results compared to federated learning
[22]. Models are exchanged between individual devices and
aggregated by each edge device depending on the aggregation
method, alleviating the communicative bottleneck and single
point of failure issues imposed on federated learning.

While decentralized learning solves the scalability chal-
lenges faced in federated learning, it is still vulnerable to
byzantine environments [23]. Since the predefined aggregation
method in decentralized learning does not have access to
all models in the network, aggregation is performed with
less information compared to federated learning, resulting in
relatively less resistance against possible poisoning attacks
[24]. Broadly studied poisoning attacks include the backdoor
attack [25]–[27] and the label-flipping attack [28], [29]. The
effect of these attacks can amplified through combining them
with the Sybil attack [30], in which an adversary controls
numerous nodes to increase its influence. For example, an
adversary may deploy the Sybil attack to rapidly spread their
poisoned model through the network. In this paper, we focus
primarily on the use of Sybil attacks in Poisoning Attacks.

Prior work on resilience against Poisoning attacks combined
with Sybil attacks in distributed machine learning has only
been done in federated learning settings. One popular example
of such work is FoolsGold [31], which aims to increase
Sybil resilience through the assumption that all Sybils will
broadcast similar gradients during each round of training.
By dynamically adapting the aggregation weight of peers’
models based on their similarity with others, FoolsGold shows
promising results on the protection against the Sybil attack.



Fig. 1. Federated learning compared to decentralized learning. Arrows
represent a connection between two nodes and indicates the two connecting
nodes share model updates with eachother.

In this work, we first explore FoolsGold’s applicability to
decentralized learning, using different types of Sybil attacks
(classified in Section V). We then continue by introducing a
novel algorithm based on FoolsGold’s intuitions with adapta-
tions for increased performance in decentralized environments.
More specifically, through the utilization of a probabilistic gos-
sip mechanism knowledge spreading. Finally, we empirically
evaluate this algorithm on numerous types of Sybil attacks and
show its ability to obtain increased Sybil resilience.

To the best of our knowledge, there exists only a single
prior work on defensive algorithms against poisoning attack
in decentralized learning [32]. Furthermore, this paper is the
first to study Sybil attacks in decentralized learning. In short,
our contributions are the following:

• We evaluate FoolsGold, a popular Sybil resilience algo-
rithm in federated learning, and assess its compatibility
with decentralized learning in Section III.

• We identify the possible Sybil attacks in decentralized
learning and illustrate their effectiveness in Section V.

• We present a pioneering algorithm for Sybil resilience in
decentralized learning in Section VII, provide an empiri-
cal evaluation in Section VIII, and perform a theoretical
analysis in Section IX.

II. BACKGROUND

A. Federated learning

• Explain more in-depth how federated learning works →
formal definitions?

• Refer to Figure 1
• Explore some implementations of popular (simple) FL

algorithms.

B. Decentralized learning

• Explain more in-depth how decentralized learning works
→ formal definitions?

• Refer to Figure 1
• Explore some implementation of popular (simple) DL

algorithms.

C. The Sybil attack

• Formal definition of Sybil attack

• In our context, most Sybil attacks may use botnets to
increase their reachability and network throughput.

• Seuken and Parks on strongly and weakly benificial Sybil
attacks.

III. RELATED WORK

A. FoolsGold

Explain FoolsGold [31] and show two graphs in which
FoolsGold is used in both federated and decentralized settings
(and show that it does not work as well in decentralized
learning if there is no more than a single attack edge to every
honest node).

How our work is different:

• It can be deployed in decentralized learning.
• It suffers less from the computationally expensive ag-

gregation method. According to Foolsgold’s authors, the
cosine similarity function was the most expensive opera-
tion.

Furthermore, we performed an extensive evaluation of Fools-
Gold in both federated learning and decentralized learning.
These are our results...

B. Resilient Averaging Gradient Descent

Resilient Averaging Gradient Descent (RAGD) [32] is a
novel algorithm for dealing with dealing with poisoning at-
tacks in decentralized learning.
How our work is different:

• RAGD naively assumes that Sybil model updates will be
quite different compared to honest model, but this may
not necessarily be the case for label-flipping attacks or
backdoor attacks.

• RAGD assumes the existence of a static adjacency matrix,
defining the edge weights between any two nodes. It also
assumes that any attack edge has a weight of 0 < ϵ < 1

2 .
• We assume that nodes will not be fully connected, similar

to real decentralized networks, which means that the most
successful attacks will likely use Sybils in the form of a
botnet.

C. Multi-Krum?

Distance based

D. Bristle?

IV. PRELIMINARIES

1) We assume that there exists some incentive for utilizing
Sybils. This may be an upper bound on the maximum
amount of connections any node can have with other
nodes. An alternative may be a communication bottle-
neck, such as network speed, which incentivizes the use
of a botnet as sybils to help distribute the poisoned
model more rapidly.



V. SYBIL ATTACKS IN DECENTRALIZED LEARNING

VI. THREAT MODEL

VII. DESIGN

• Explain FoolsGold (cannot assume everyone knows it)
• Pseudocode?
• Explain gossiping models → the probabilistic property

occurs two-fold, 1 when selecting a peer to request a
model from and 2 when selecting what model to send
to the requesting peer.

• Add figure

VIII. EVALUATION

A. Experimental setup

• DAS6 → IPv8 → Gumby
• Attacks:

– Label-flipping attack. from [31], [33]
– backdoor attack. from [31]
– a little is enough? from [33]
– fall of empires? from [33]
– sign-flipping? from [33]

• Datasets:
– ImageNet
– Cifar-10
– MNIST spin-off
– Some other dataset

• Comparison algorithms:
– FoolsGold
– FedAvg
– A few more...

B. Results

IX. ANALYSIS

X. DISCUSSION

XI. CONCLUSION
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