
Towards Sybil Resilience in Decentralized Learning
— MSc. Thesis —

Thomas Werthenbach
Delft University of Technology

Delft, The Netherlands
T.A.K.Werthenbach@student.tudelft.nl

Johan Pouwelse
Delft University of Technology

Delft, The Netherlands
J.A.Pouwelse@tudelft.nl

Abstract—Decentralized learning has recently been emerging
as a promising alternative to the privacy-enforcing distributed
machine learning technology, federated learning. The scalability
of federated learning is limited by the internet connection and
memory capacity of the central parameter server, and the (non-
linear) aggregation function. Decentralized learning obviates
the need of a central parameter server by decentralizing the
aggregation process across all participating nodes. Numerous
studies have been conducted on improving the resilience of
federated learning against poisoning and Sybil attacks, whereas
the resilience of decentralized learning remains largely unstudied.
This research gap poses as the main motivator for this work, in
which we aim to study and suggest a novel solution for improving
the Sybil poisoning resilience of decentralized learning.

We present SybilWall, a pioneering algorithm focused on
increasing the resilience of decentralized learning against targeted
Sybil poisoning attacks. By combining a modified version of
FoolsGold [1], a similarity-based Sybil-resistant aggregation func-
tion designed for federated learning, with a novel probabilistic
gossiping mechanism, we set a new baseline for Sybil resilient
decentralized learning.

We performed extensive empirical evaluations of SybilWall,
and found that SybilWall significantly outperforms existing state-
of-the-art solutions designed for federated learning scenarios, and
is the only aggregation function to achieve consistent accuracy
over numerous adversarial strategies. Furthermore, SybilWall
eliminates the need of spawning additional Sybils, as our
evaluations indicate a higher success rate amongst adversaries
employing a smaller number of Sybils. We conclude this work by
discussing possible improvements of SybilWall and highlighting
promising future research directions.

Index Terms—Decentralized applications, Adversarial machine
learning, Federated learning, Decentralized learning, Sybil at-
tack, Poisoning attack

I. INTRODUCTION

The rise of machine learning has resulted in an increasing
number of everyday-life intelligent applications. As such,
machine learning has been used in personal assistants [2],
recommendation in social media [3] and music [4], and
cybersecurity [5]. However, accurate machine learning models
require large training datasets [6], [7], which can often be
hard to obtain and store due to recent privacy legislation [8].
Federated learning [9] has become a promising alternative
and widely adopted tool for crowd sourcing computationally
expensive machine learning operations, reportedly having been
used for training numerous industrial machine learning models

[10]–[14]. Federated learning ensures the protection of privacy,
as the user’s data will not leave their device during training.

With federated learning, in contrast to centralized machine
learning, training takes place on the end-users’ personal de-
vices, which are often referred to edge devices or nodes.
The resulting trained models are communicated to a central
parameter server, commonly referred to as the parameter
server, which aggregates these models using some predefined
methodology. By only sharing the end user-trained models
with the parameter server, the user’s privacy is preserved,
while obtaining comparable performance compared to central-
ized machine learning [15]. While there exist attacks in which
training data can be reconstructed based on the gradient of
the trained models [16], [17], defense mechanisms against this
attack have been proposed [18], [19].

However, federated learning suffers from some disadvan-
tages. For instance, the parameter server aggregates the models
of all participating nodes, inducing heavy communication costs
and a potential bottleneck in the learning process affecting
the overall convergence time [20]. Secondly, the scalability
in terms of the amount of nodes heavily varies depending
on the aggregation method. In secure and robust federated
learning aggregation methods, the incorporation of additional
nodes during aggregation may result in significantly increased
computational effort for the parameter server [21]. Thirdly, the
parameter server performing the aggregation poses a single-
point of failure [22]. Disruptions to the parameter server
can cause downtime and hinder the overall model training
process, particularly in architectures where nodes require the
globally aggregated model before continuing their training. An
upcoming alternative aiming to resolve these issues is decen-
tralized learning, also commonly referred to as decentralized
federated learning. In decentralized learning, there exists no
dedicated parameter server performing the aggregation and the
nodes form a distributed network, e.g. a peer-to-peer network,
in which each node individually performs aggregation on
their neighbours’ models (see Figure 1). While the infor-
mation available during aggregation is more limited relative
to federated learning, it has been shown that decentralized
learning has the potential to obtain similar results compared
to federated learning [23]. Models are exchanged between
individual devices and aggregated on individual scale using
some predefined aggregation method, alleviating the commu-

1

Figure 1: Federated learning compared to decentralized learn-
ing. Arrows represent a connection between two nodes and
indicates the two connecting nodes share model updates during
each training round.

nicative bottleneck and single point of failure issues imposed
on federated learning, and paving the path for boundless
scalability.

While decentralized learning solves the scalability chal-
lenges faced in federated learning, it is still vulnerable to
byzantine environments [24]. Since the predefined aggregation
method in decentralized learning does not have access to
all models in the network, aggregation is performed with
less information compared to federated learning, resulting in
relatively less resistance against possible poisoning attacks
[25]. Poisoning attacks are can generally be categorized in
two categories, namely those of targeted poisoning attacks
and untargeted poisoning attacks. Targeted poisoning attacks
focus on achieving a specific goal an adversary aims to achieve
such as the label-flipping attack [26], [27] and the backdoor
attack [28]–[30]. On the other hand, untargeted poisoning
attacks aim to hinder the result of the training process in
some way without any particular goal in mind. The effect of
these attacks can often be amplified through combining them
with the Sybil attack [31], in which an adversary controls a
substantial amount of nodes to increase its influence. As such,
an adversary may deploy the Sybil attack to rapidly spread
their poisoned model through the network. In this work, we
focus exclusively on targeted poisoning attacks amplified by
Sybil attacks in decentralized learning.

Prior work on resilience against poisoning attacks combined
with Sybil attacks in distributed machine learning has mainly
been done in federated learning settings. One popular exam-
ple of such work is FoolsGold [1], which aims to increase
Sybil resilience under the assumption that all Sybils will
broadcast similar gradients during each round of training.
By dynamically adapting the aggregation weights of peers’
models based on their similarity with others, experimental
results suggest that FoolsGold has the potential to provide
effective protection against Sybil attacks in small-scale and
simple federated learning settings.

In this work, we experimentally demonstrate FoolsGold’s
inability to scale to an unbounded number of nodes in feder-
ated learning and inept defensive capabilities against targeted
poisoning attacks in decentralized learning. We suggest an
improved version of FoolsGold, named SybilWall, which
shows significant resilience towards defending against targeted

Figure 2: The general train-aggregate loop executed by all
nodes participating in decentralized learning. Note the distinc-
tion in the work performed by participating nodes in federated
learning and decentralized learning.

poisoning attacks whilst enjoying the boundless scalability of-
fered by decentralized learning. More specifically, we achieve
this by introducing a probabilistic gossiping mechanism for
knowledge spreading. Finally, we empirically evaluate this
algorithm on numerous types of Sybil attacks and show its
ability to obtain increased Sybil resilience.

To the best of our knowledge, there exists only a single
other work on defensive algorithms against poisoning attack
in decentralized learning [32]. Moreover, this paper is the first
to study Sybil attacks in decentralized learning. In short, our
contributions are the following:

• We evaluate FoolsGold, a popular Sybil resilience algo-
rithm in federated learning, and assess its compatibility
with decentralized learning in Section III.

• We define the Spread Sybil Poisoning attack for effective
Sybil poisoning attacks in decentralized learning, and
decompose it into three distinct adversarial scenarios.

• We present SybilWall, a pioneering algorithm for Sybil
resilience with boundless scalability in decentralized
learning, in Section V.

• We perform an empirical evaluation of SybilWall’s per-
formance in VI on several datasets and against competi-
tive alternatives.

II. BACKGROUND

A. Federated learning

Federated learning was initially proposed by Google [9] as
a means for training machine learning models on real user
data without compromising users’ privacy. This is achieved
by training the machine learning model on the edge devices,
which contain the real user data. The training proceeds in
synchronous rounds, each consisting of a predefined number
of epochs, during which the trained models are sent to the
parameter server at the end of each round. The role of the
parameter server is to aggregate all trained models into a
global model without the need of any training data. After
the models are aggregated, the global model is communicated
back to the edge devices, after which the next training round
commences. See Figure 1 for a simplified federated learning
network topology. The original paper [9] suggests the usage
of FedAvg, which adopts a weighted average function as the

2

aggregation function, such that the next global model wt+1 is
calculated as follows:

wt+1 =
∑
i∈N

|Di|
|D|

wt
i (1)

where wt
i is the model of node i in round t, N is the set of

nodes, Di corresponds to node i’s local dataset and D is the
global distributed collection of data, such that D =

⋃
j∈N Dj .

The goal is of the training process is to minimize the global
loss function such that the global model x approaches the
optimal model x∗. More formally, the search for a global
optimal model can approximately be defined as:

w∗ = argmin
w

∑
i∈N

|Di|
|D|

Li(w) (2)

where Li is a node’s loss function, e.g. cross-entropy loss or
negative log likelihood loss, using the node i’s local dataset.

In federated learning, all participating nodes are only con-
nected to the server, such that the network G is defined
as a tuple of nodes and undirectional edges ⟨N,E⟩, for
which there exists a one-to-one mapping N → E, such that
∀n ∈ N, ⟨n, s⟩ ∈ E, where the parameter server is denoted
by s.

B. Decentralized learning

Decentralized learning is an upcoming alternative for fed-
erated learning [33]–[36]. In contrast to federated learning,
which relies on a parameter server for aggregating locally
trained models, aggregation in decentralized learning takes
place at a smaller scale and is performed by every participating
node on their own model and those of its neighbours (see
Figure 1 and 2). By doing so, numerous issues faced in feder-
ated learning can be resolved; the most notable improvement
of which can be found in terms of scalability and can be
decomposed into three distinct aspects:

1) Communication costs: In parameter server-centered ag-
gregation techniques, all participating models are down-
loaded and uploaded every training round, forming a
communication bottleneck bounded by the parameter
server’s internet connection. Such bottlenecks are reduced
in decentralized learning to the number of neighbours.

2) Memory: Storing all models in memory during aggrega-
tion, may result in substantial memory usage. In decen-
tralized learning, this constraint poses a diminished issue,
given that the aggregation transpires with a significantly
reduced number of models.

3) Aggregation time: The aggregation function is no longer
performed with every model from all participating nodes,
reducing the required computation time of more sophis-
ticated aggregation functions, particularly those that do
not scale linearly with respect to the number of models.

If the prior example of a basic averaging function were
to be applied in decentralized learning, one would obtain the
following aggregation function:

wt+1
i =

1

|Ni|+ 1

∑
j∈{Ni ∪ i}

wt
j (3)

where Ni is the set of all neighbours of node i.
Nodes in decentralized learning may not have access to all

information in the network, causing a decrease in informa-
tiveness. More specifically, convergence speeds may decrease
compared to federated learning [36] and nodes may experience
increased vulnerability to byzantine attacks due to the lack
of global information [24]. However, it has been shown that
decentralized learning can obtain comparable performance
results relative to federated learning and, in some cases,
outperform federated learning altogether [37], [38].

The network graph G in decentralized learning, in contrast to
that of federated learning, does not contain a parameter server,
and nodes are generally not limited to only be connected
through edges with a subset of the set of nodes N .

C. Targeted poisoning attacks

Poisoning attacks can be defined as methods with which an
adversary attempts to compromise the integrity of the global
model in a some form of distributed machine learning, and can
be taxonomized into two categories: targeted poisoning attacks
and untargeted poisoning attacks. With untargeted poisoning
attacks, the adversary aims to decrease the performance metric
of the model without any particular goal in mind. On the
other hand, in the context of targeted poisoning attacks, the
adversary aims to achieve a predetermined goal by manip-
ulating the global model to behave in a certain deterministic
manner which deviates from the objectively correct behaviour.
We consider two of such attacks related to the domain of
classification: the label-flipping attack [26], [27] and the
backdoor attack [28]–[30].

The label-flipping attack can be deployed as an attempt
to increase the likelihood for two targeted classes to be
misclassified. More specifically, given two target classes t1
and t2, the aim of the label-flipping attack is to manipulate the
model such that some arbitrary sample x ∈ Xt1 belonging to
class t1 is more likely to be classified as class t2 by the global
model and vice versa. A way to achieve this is to explicitly
transform the adversary’s local dataset D to an adversarial
dataset D′ and train the adversarial model on this dataset.
Given two target classes t1 and t2, this transformation can
be defined as:

D′ = {(x, y) ∈ D | y ̸= t1 ∧ y ̸= t2}
∪ {(x, t1) | (x, y) ∈ D, y = t2}
∪ {(x, t2) | (x, y) ∈ D, y = t1}

(4)

The backdoor attack requires a more sophisticated manip-
ulation of the training data. The objective of a backdoor
attack is to alter the global model such that any sample
containing a specific predefined pattern is misclassified to a
chosen target class. In the domain of image classification,
this adversarial pattern could for instance correspond to small

3

0

25

50

75

100

0 200 400 600 800

Round

A
cc

ur
ac

y/
A

tta
ck

 r
at

e
(%

)

FedAvg accuracy
FedAvg attack rate
FoolsGold accuracy
FoolsGold attack rate

Figure 3: FoolsGold and FedAvg in federated learning setting
using the CIFAR-10 [39] dataset on a LeNet-5 [40] model.

0

25

50

75

100

0 100 200 300 400

Round

A
cc

ur
ac

y/
A

tta
ck

 r
at

e
(%

)

FoolsGold accuracy
FoolsGold attack rate
Repple accuracy
Repple attack rate

(a) Network topology 1

0

25

50

75

100

0 100 200 300 400

Round

A
cc

ur
ac

y/
A

tta
ck

 r
at

e
(%

)

FoolsGold accuracy
FoolsGold attack rate
Repple accuracy
Repple attack rate

(b) Network topology 2

Figure 4: FoolsGold and SybilWall in decentralized learning
using the FashionMNIST [41] dataset on a single-layer soft-
max neural network.

square or triangle in the top-left corner of the input image.
Given a target class t and a function f to introduce a hidden
pattern to input samples, the dataset transformation applied on
the adversary’s local dataset D can be defined as:

D′ = {(f(x), t) | (x, y) ∈ D} (5)

D. The Sybil attack

The Sybil attack, first introduced by Douceur [31], is an
adversarial strategy in decentralized environments in which
the attacker exploits the inability of honest nodes to verify the
authenticity of another node’s identity. By effortlessly creating
fake nodes, named Sybils, and strategically connecting these
to nodes in the targeted decentralized network, the attacker
may gain significantly more influence compared to the honest
nodes. We denote the connections between Sybils and honest
nodes as attack edges. A typical example of a scenario in
which the Sybil attack may be deployed is voting [42], [43].
In such a case, an attacker can easily generate sufficient nodes
to outnumber all other real voters.

A network on which a Sybil attack is deployed can be
defined as G = ⟨N ′, E′⟩, such that N ′ = N ∪ S , where
S is the unbounded set of Sybils created by the adversary.
Note that Sybils and honest nodes are indistinguishable from
a regular point of view. The modified set of edges is defined
as E′ = E ∪ES , where ES is the set of attack edges, which
is highly dependent on the strategy of the adversary. Note that
attack edges always consist out of at least one Sybil, such that
∀⟨i, j⟩ ∈ ES , i ∈ ES ∨ j ∈ ES .

0

100

200

300

0 20000 40000 60000 80000

Nodes

T
im

e
(s

)

Figure 5: Pairwise cosine similarity computation time against
the number of nodes, illustrating the O(n2) time complexity of
the pairwise cosine similarity computation. TODO: this graph
demonstrates two limitations: memory and time

In this work, we consider the Sybil poisoning attack, in
which an attacker creates fake nodes to spread its malicious
model more rapidly and effectively throughout the network.

III. RELATED WORK

A. FoolsGold

FoolsGold [1] is an algorithm for mitigating Sybil poisoning
attacks in federated learning settings. It builds on the assump-
tion that Sybil model updates show a substantially higher
degree of similarity relative to that of honest model updates.
Through the computation of similarity between a node’s model
update history and that of others, and subsequently mapping
this to the model update’s weight in an average-based aggrega-
tion, FoolsGold manages to mitigate Sybil targeted poisoning
attacks as shown in Figure 3.

During aggregation, FoolsGold first computes the pairwise
cosine similarity score of all model update histories. The
model update history of node i in round T is defined as
hT
i =

∑T
t=0 w

t
i . In an effort to decrease the number of false

positives among honest nodes, each score sij is multiplied by
the ratio of node i’s maximum score and node j’s maximum
score in cases where the latter is greater, such that maxv siv

maxv sjv
if maxv siv < maxv sjv. The scores are then aggregated
per node by taking the maximum and subsequently inversed,
such that node i’s aggregated score s′i can be defined as
s′i = 1−maxv siv . As FoolsGold assumes there exists at least
one honest node, the aggregated scores are rescaled such that
the maximum aggregated score equals 1.

The aggregated scores are then transformed to weights for
average-based aggregation through the use of a bounded logit
function. This function can be considered a gradual decision
boundary for determining a node’s honesty based on its
similarity with others. Finally, the weights are normalized and
the aggregated model is computed through weighted average.

A reproduction of FoolsGold’s results can be found in
Figure 3, where the attack score represents the extent to which
the attack was successful, e.g. the percentage of labels that
are successfully flipped in the label-flipping attack. It becomes
clear that FoolsGold shows significantly higher Sybil resilience
compared to the FedAvg. However, as discussed in Section
II-B, federated learning can be considered unscalable as the

4

number of participating nodes increases, particularly in view of
the O(n2) pairwise cosine similarity computation required by
FoolsGold. Figure 4 shows the performance of FoolsGold in a
decentralized setting against the performance of our improved
algorithm, SybilWall, based upon FoolsGold. It is clear that
FoolsGold’s performance can heavily depend based on the
network topology, whereas SybilWall demonstrates relatively
higher and more consistent Sybil resilience.

B. Krum

Krum [44] attempts to improve the general Byzantine re-
silience in distributed machine learning. This approach oper-
ates on the premise that Byzantine model updates are prone
to deviate from the updates produced by honest participants.
More specifically, the aggregation involves computing a score
s(i) for every received model i, which corresponds to the
sum of the squared distance between i and its n − f − 2
nearest distant-wise neighbours, where f corresponds to the
maximum number of Byzantine participants. The model m
with the lowest score, such that m = argmini s(i) , is chosen
as the next model to train on.

C. Resilient Averaging Gradient Descent

Resilient Averaging Gradient Descent (RAGD) [32] utilizes
similar distance-based intuitions as Krum, but is specifically
designed for decentralized learning. By introducing additional
assumptions, it guarantees convergence of an approximately
optimal model in the presence poisoning attacks in decentral-
ized learning. Firstly, it assumes that all nodes are honest and
that solely their local datasets might be compromised, thereby
still participating in aggregation benevolently, but producing
malicious models. Secondly, RAGD assumes the existence
of a weighted global adjacency matrix in which the weights
are considered “trust scores” and correspond to the influence
nodes have during aggregation. RAGD assumes that the edge
weights from some node i to some attacked neighbouring
node j is limited by a predefined global constant ϵ, such that
0 < ϵ < 1

2 , aij < ϵ, where aij corresponds to the edge weight
assigned by node i to its edge with attacked node j.

A typical round of training in RAGD can be decomposed
in a number of steps. 1) Nodes attempt to reach a global
consensus on the aggregated model through repeatedly broad-
casting and averaging models aggregated by neighbouring
nodes, weighted by the corresponding edge weight. 2) Every
node trains the aggregated model and broadcasts the gradients.
Note that malicious models may be produced by attacked
nodes during this step. 3) While some value g, which is
initialized to 1, remains larger than 1 − ϵ, RAGD selects
two of the received gradients, such that the euclidean distance
between the two selected gradients gi and gj is maximized, and
eliminates the gradient which has the largest summed distance
to all other gradients. The edge weight corresponding to the
node which produced the eliminated gradient is subtracted
from the value g. When g ≤ 1 − ϵ, every node computes
the weighted average of the remaining gradients. 4) Finally,

the weighted average of the remaining gradients is applied to
the (pre-training) aggregated model and the next round begins.

IV. THREAT MODEL AND PRELIMINARIES

A. Adversarial assumptions

Assumption 1. The adversary is only capable of influencing
the learning process through the predefined Decentralized
Learning API.

The adversary’s only method of communicating with other
nodes or influencing the learning process is through the default
Decentralized Learning API to which honest nodes have access
as well. The latter implies that the adversary does not have the
ability to manipulate other nodes’ local models or data.

Assumption 2. Sybil model updates show high similarity
compared to honest model updates.

We assume that the model updates by Sybils exhibit a higher
degree of similarity compared to updates made by honest
participants, as stated by prior work [1].

Assumption 3. The adversary is unrestricted in both the
quantity of Sybil nodes it can create and the selection of honest
nodes it can form attack edges to.

Assumption 4. The creation of Sybils by the adversary does
not increase its adversarial computing capabilities.

Regardless of the number of Sybil entities created by the
adversary, we make the assumption that the computational
capabilities of the adversary remain constant and do not scale
with the number of Sybil entities. The primary rationale behind
this assumption is the limited knowledge of the internal state of
the model between the aggregation and training phases. More
specifically, considering Figure 2, no participating node can
with certainty determine the internal state of other participating
nodes, including the aggregated model before training. As
per Assumption 2, it follows that each Sybil must utilize the
same aggregated model prior to training, thereby implying
equivalence to Assumption 4.

B. Network restrictions

Assumption 5. ∃ e ∈ N such that di ≤ e, ∀i ∈ N , where di
represents the degree of node i.

In order to restrict the impact that any individual node
may exercise on the network, we assume the existence of an
upper bound on the degree of any node. Such bounds may
arise naturally in certain environments, such as peer-to-peer
networks TODO SOURCE. This constraint serves to limit the
potential harm that any one node may cause.

Enforcing an upper bound on the degree of nodes has been
studied before. todo: find existing methods to achieve this.

Assumption 6. Every node has at least one honest neighbour.

5

C. Adversarial attack strategy
We define an intuitive and effective type of attack

in similarity-based aggregation techniques in Decentralized
Learning as the Spread Sybil Poisoning Attacks (SSP attack).
That is, the adversary aims to evade detection by maximizing
the distance between its attack edges while increasing the
influence of the attack by minimizing the distance between any
honest node and the nearest attack edge. The latter part of this
problem resembles the Maximal Covering Location Problem
[45], which is known to be an NP-Hard problem [46]. To
determine attack edge positions for SSP attacks, we propose
a heuristic approach using the K-medoids unsupervised clus-
tering algorithm, assigning attack edges to the medoids.

Furthermore, we define a parameter for SSP attacks, ϕ,
which represents the average density of attack edges per node.
Note that in this distribution, attack edges are as spread out
as possible, such that ∀ai, aj ∈ A, |ai − aj | ≤ 1, where A
represents the set of the number of attack edges per node. As
such, if ϕ = 1, we say that every honest node has exactly one
attack edge. For any value of ϕ, each honest node receives
either ⌊ϕ⌋ or ⌈ϕ⌉ attack edges. The total number of attack
edges is therefore denoted as ⌈|N | · ϕ⌉, where |N | is the
total number of honest nodes. The remainder, denoted as
ϕ mod 1, is distributed according to the K-medoids clustering
algorithm. The resulting attack edge positions are then grouped
and distributed over the Sybils while upholding Assumption
5. We define three attack scenarios for specific ranges of ϕ.
These attack scenarios are the following:

i. Dense Sybil poisoning attacks. ϕ ≥ 2. Every honest node
has at least two attack edges, whereas any distinct Sybil
node cannot form more than one attack edge to any given
node. As a result, the honest node is a direct neighbour
of at least two distinct Sybil nodes.

ii. Distributed Sybil poisoning attack. ϵ < ϕ < 2. There
exists at least one node which is connected to fewer than
2 attack edges and will therefore only be connected to at
most one Sybil node.

iii. Sparse Sybil poisoning attack. ϕ ≤ ϵ. A low value of ϕ
will result in sparse and distant attack edges. Nodes which
are a direct neighbour of a Sybil node are rare. Any node
has a probability of ϕ being directly connected to a Sybil
node.

V. DESIGN OF SYBILWALL

Our solution, SybilWall, attempts to deliver the same
performance as FoolsGold in terms of accuracy and attack
mitigation, while at the same time enjoying the scalability
advantages offered by decentralized learning. This is achieved
by reducing an modified version of FoolsGold to one of
the subfunctions of our algorithm. Moreover, we integrate a
probabilistic gossiping mechanism for knowledge spreading.
By doing so, the FoolsGold subfunction is capable of detecting
distant attack edges from the same adversary.

In short, SybilWall was designed to mitigate the three attack
scenarios of the worst-case attack scenario, as listed in Section
IV-C. These scenarios are the following:

i. Dense Sybil poisoning attacks: The adopted FoolsGold
subfunction can detect Sybil nodes directly through its
similarity mechanism, thereby capable of mitigating the
attack.

ii. Distributed Sybil poisoning attack: Not all nodes are
capable of detecting potential Sybils among its direct
neighbours through a similarity metric. The Sybil updates
it receives will likely vary from all other received updates
and therefore considered honest by Assumption 2. Our
probabilistic gossiping mechanism serves as a channel for
data dissemination by propagating data of probabilistically
selected nodes to neighbours, thereby potentially provid-
ing a neighbour with vital data required for detecting
Sybils amongst its neighbours.

iii. Sparse Sybil poisoning attack: Due to the low density of
Sybils, it is conceivable that the probabilistic gossiping
mechanism may be unable to disseminate knowledge to
an extent that enables all attacked nodes to detect the
presence of Sybils prior to the completion of the training
process. Another possible scenario in which attacked
nodes may not obtain sufficient knowledge to successfully
detect Sybils among their neighbours is due to the natural
divergence of the data produced by Sybils. In such case,
the information received by the attacked nodes should
theoretically enable them to detect Sybils, but may be
outdated to such an extent that the information has suffi-
ciently diverged for both Sybils to be considered honest
by Assumption 2. In both aforementioned scenarios, we
argue that due to a natural dampening effect originating
from the train-aggregate loop on each node, depicted in
Figure 2, an attack’s effect will likely result in a negligible
and tolerable effect on the average global model.

A. Adopting FoolsGold

Given Assumption 2 (Sybil models are likely to show high
similarity) and the promising performance of FoolsGold [1]
on exploiting this increased similarity in a federated learning
setting, we include a modified version of FoolsGold as a
subfunction within SybilWall. This subfunction’s main task
is to mitigate dense Sybil poisoning attacks, as it will know
of the existence of at least two attack edges and will thereby
exclude them from the aggregation due to their high similarity.
However, this subfunction also plays a role in mitigating
distributed Sybil poisoning attack, with the help of the prob-
abilistic gossiping mechanism. We assume that the reader is
aware of the internal workings of FoolsGold, as described in
Section III-A.

Firstly, we modify FoolsGold by always trusting the ag-
gregator. There is no need to compare the similarity with the
current aggregator, as we assume that a node’s training dataset
and their training function cannot be compromised, and can
therefore trust itself. As such, we exclude the aggregator’s
model from the cosine similarity and logit scoring function
and introduce it prior to the normalization of the weights with
a weight of 1. An additional argument for this design choice

6

is that neighbours with similar datasets, and therefore similar
models, should not be penalized during aggregation.

Secondly, FoolsGold is adapted to support the addition of
an arbitrary amount of model histories on the cosine similarity
function. The purpose of the gossiping mechanism described in
Section V-B is to spread information about indirect neighbours
by communicating their model histories. By including these in
the cosine similarity function of the FoolsGold subfunction,
SybilWall potentially gains the ability to detect new Sybils
among its direct neighbours, thereby mitigating their attacks
from that point onwards. Note that only the models of direct
neighbours are considered for aggregation and are merely
judged based on the additional information obtained through
gossiping.

B. Probabilistic gossiping mechanism

The aforementioned adopted FoolsGold sub-function re-
quires additional knowledge about its indirect neighbours to
increase its detection rate, as the received model updates from
direct neighbours is not sufficient to detect Sybils if the node
is only connected to a single Sybil. To facilitate the knowledge
spreading, we devised a probabilistic gossiping mechanism.

1) Probabilistic gossiping: First, let us define the method
in which random model update histories are selected to be
propagated to a neighbouring node. In short, SybilWall uses
a weighted random selection algorithm to select which node’s
model update history to propagate.

More specifically, let Hi denote the database of model
update histories associated with node i. Hi consists of a list
of tuples, with each tuple of the form (p, h, r, d, f) ∈ Hi,
where p represents the node from which the model update
history originates, h corresponds to the model update history
defined by the sum of all models produced by node p, r is
the round from which the model update history originates,
d is the distance from node i to node p in the number of
hops, and f is the neighbour of node i from which this model
update history has been received. Note that node p’s model
update history h in round i is defined as the sum of all
model updates originating from node p, i.e. hi

p = wi
p + hi−1

p ,
given model update wi

p from node p in round i. Given
current node i and its neighboring node j, let the filtered
database of model update histories H′

i be defined as H ′
i =

{(p, h, r, d, f) | (p, h, r, d, f) ∈ Hi, p /∈ {i, j} ∧ f ̸= j}. This
filtered database is used for performing a weighted random
selection of a model update history from node i to node j.

First, weights are assigned to the entries of the filtered
database of model update histories. These weights directly
correspond to the distance d and are assigned according to
the exponential distribution:

P (d) = λe−λd (6)

where d is the distance in the number of hops between
current node i and the node of which the weight is computed.
λ can be considered a hyperparameter indicating the relevance
of propagating the model update history of distant nodes. The

selection of the exponential distribution is not arbitrary, as
it prioritizes the propagation of the update history of nearby
nodes over that of distant nodes. This approach mitigates
distant attack edges by leveraging the natural dampening effect
described previously. After the weights have been assigned to
filtered dataset of model update histories, a weighted random
selection is performed to select which model update history
to propagate.

A node’s local database of model update histories can
be updated in a number of manners. Firstly, through direct
neighbour updates. During every round of training, every
node receives a model update from their direct neighbours
and update their model update history of that neighbour
accordingly. Secondly, if a node receives a the history of model
updates through gossiping which it has not seen before, it is
registered directly. Lastly, if a node j receives a history of
model updates from some node i which is more recent than the
prior history of model updates known to node j, it is updated
accordingly. Note that a node’s local collection of model
update histories may grow to a significant size over time,
resulting in a decrease in performance during aggregation. In
such scenarios, our gossiping mechanism supports dropping
outdated model update histories to mitigate this occurrence.

Mention synchronous training rounds?
2) Secure and efficient communication: SybilWall replaces

the traditional model sharing discussed in Section II-B with
a more sophisticated communication protocol. The previously
described probabilistic gossiping mechanism requires model
histories to be propagated to neighbours, which allows for
spoofing by malicious nodes if implemented naively. Such
strategies could be employed to increase some target node’s
similarity with another node, and thereby increasing the prob-
ability for a higher attack score by the adversary. To mitigate
this vulnerability, we propose an alternative communication
protocol employing cryptographically secure signatures.

To enable the use of signatures, model update histories
need to be constructed on the originating nodes and com-
municated to its neighbours, which can then propagate it
to their neighbours according to the probabilistic gossiping
mechanism. However, this induces additional communication
costs on any node as both the model and the model history
need to be communicated to its neighbours. We resolve these
redundant communication costs by only sending the the model
history. The trained model itself can be inferred from the
model history by comparing it with the previous model history
in the sequence.

todo: define time t for history More specifically, we con-
struct messages such that a message mi→j from node i
to j can be decomposed into ⟨hi, Si(hi), gk, Sk(gk)⟩, where
hi represents node i’s updated model history signed by its
signature function Si and gk corresponds to node k’s gossiped
model history signed by node k.

3) Downtime support: SybilWall supports nodes going of-
fline for an arbitrary period. When the offline node becomes
available again, the model update can be computed by waiting
an additional round while directly obtaining the model history.

7

Table I: The datasets used in the evaluation of SybilWall.

Dataset Model Learning rate
MNIST [47] Single soft-max layer η = 0.01 [1]
FashionMNIST [41] Single soft-max layer η = 0.01 [1]
CIFAR-10 [39] LeNet-5 [40] η = 0.004 [48]
SVHN [49] LeNet-5 [40] η = 0.004 [48]

Table II: The default hyperparameters used during the evalu-
ation of SybilWall.

Hyperparameter Value
honest nodes 99
Attack edge density ϕ 1
Gossip mechanism parameter λ 0.8
Dirichlet concentration parameter α 0.1
Max node degree d 8
Local epochs 10
Batch size 8

One may note an alternative for the altered communication
protocol described previously in which we use a pull-based
history. However, the disadvantage of this approach is the
reachability of these nodes.

VI. EVALUATION

We aim to evaluate SybilWall through answering the fol-
lowing questions: (1) How does the complexity of the dataset
and model affect the performance of SybilWall? (2) How does
SybilWall perform compared to other existing algorithms? (3)
How does the attack density ϕ influence the performance of
SybilWall? (4) What is the effect of the data distribution among
the nodes on the performance of SybilWall? (5) Can SybilWall
be further enhanced by combining it with different techniques?

A. Experimental setup

SybilWall was implemented in Python3 for experimental
evaluation and is online available [50]. We have used the
PyTorch [51] library for the training of machine learning
models. As for the communication between the individual
nodes, we leveraged IPv8 [52], which provides an API for
constructing network overlays in order to simulate P2P net-
works. Furthermore, we adopted the Gumby [53] library as
the experimental execution framework, which was specifically
designed for sophisticated experiments with IPv8 involving
many nodes. All experiments were performed on the Dis-
tributed ASCI Supercomputer 6 (DAS-6) [54]. Each node in
the compute cluster has access to a dual 16-core CPU, 128
GB RAM and either an A4000 or A5000 GPU. Furthermore,
all default hyperparameters for the experiments can be found
in Table II. Except where mentioned otherwise, these default
hyperparameters define the configuration of all experiments.

In all experiments, we measure the accuracy of the trained
models by averaging the accuracies of the models of all honest
nodes. Simultaneously, we measure the success rate of the
attacker by averaging the attack score achieved on all models.
The attack score is defined as the accuracy a model obtains on
the test dataset transformed by the data transformation defined
in either equation 4 or 5. Note that both metrics are measured
each round directly after aggregation.

0

0.21

0

0

0.03

0

0.76

0

0

0

0.01

0

0

0

0

0.01

0

0.96

0

0.02

0

0

0

0

0

0.66

0.33

0

0

0

0

0.46

0

0

0

0.23

0

0.09

0.22

0

0.32

0

0

0.06

0.42

0

0.09

0.1

0

0

0

0

0

0

0

0.48

0.01

0.1

0.3

0.11

0

0

0.08

0

0

0

0.36

0

0

0.56

0.02

0

0.19

0

0

0.5

0

0

0.28

0

0

0

0

0.01

0.02

0.47

0

0.39

0

0.11

0

0

0.49

0

0.06

0.42

0.02

0

0.01

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9

Dataset label

N
od

e

Figure 6: Example distribution for non-i.i.d. data generated
with the Dirichlet distribution with concentration parameter
α = 0.1 for 10 nodes and a dataset containing 10 labels, such
as CIFAR-10 [39] or MNIST [47].

1) Datasets: The datasets used during evaluation can be
found in Table I. These datasets were chosen for a number
of reasons. First of all, MNIST [47] is a broadly-used dataset
for the evaluation of machine learning algorithms [1], [55]–
[57], serving as an adequate baseline algorithm for Sybil-
Wall. FashionMNIST was developed as a more challenging
variant of MNIST, thereby providing an ideal candidate for
demonstrating the direct correlation between the complexity
of classification tasks and the performance of SybilWall. The
choice for SVHN and CIFAR-10 is motivated by the increased
complexity of models required to obtain satisfactory accuracy,
which may affect the performance of SybilWall. The usage
of complex multi-layer models in evaluation is frequently
overlooked in related work or only perform an evaluation on
a single dataset [1], [55]–[59]. Moreover, in the case when
multi-layer models are used, they are regularly pre-trained
and solely evaluated through the use of transfer learning [1],
[57], [60]. While recognizing that all the datasets employed in
this experimental evaluation focus on image classification, we
argue that that focusing on image classification is justifiable
as it is known as a well-established task in machine learn-
ing. Furthermore, image classification frequently serves as a
benchmark for evaluating novel distributed machine learning
algorithms [1], [36], [55]–[59], and there exist a variety of
widely available datasets constructed specifically for this task.

The models which are trained using the aforementioned
datasets can also be found in Table I, as well as the corre-
sponding learning rate η. Note that all these models are trained
using stochastic gradient descent (SGD).

2) Data distribution: The aforementioned datasets are de-
signed for centralized machine learning and require to be
distributed among the participating nodes. During our eval-
uations, we assume that data is not identically and indepen-
dently distributed (non-i.i.d.), which more closely resembles
real world data than uniformly distributed data (i.i.d) [61],
[62]. While some works employ the use of a K-shard data
distribution [9], [57], [63], [64] or simply assign each node a

8

0

25

50

75

100

0 100 200 300

Round

A
cc

ur
ac

y
(%

)

Cifar−10
SVHN
FashionMNIST
MNIST

(a) Accuracy label-flipping attack

0

25

50

75

100

0 100 200 300

Round

A
tta

ck
 r

at
e

(%
)

Cifar−10
SVHN
FashionMNIST
MNIST

(b) Attack score label-flipping attack

0

25

50

75

100

0 500 1000 1500

Round

A
cc

ur
ac

y
(%

)

Cifar−10
SVHN
FashionMNIST
MNIST

(c) Accuracy backdoor attack

0

25

50

75

100

0 500 1000 1500

Round

A
tta

ck
 r

at
e

(%
)

Cifar−10
SVHN
FashionMNIST
MNIST

(d) Attack score backdoor attack

Figure 7: Accuracy and attack score for the label-flipping
attack (300 rounds) and the backdoor attack (1450 rounds)
on different datasets.

defined number of classes of the training data [1], [63], [65],
we utilize the Dirichlet distribution [66], which has recently
gained more popularity for generating non-i.i.d. distributions
[36], [67], [68]. More specifically, given the concentration
parameter α, we compute for each class the fraction of data
every node possesses, creating seemingly naturally unfair and
irregular data distributions. Figure 6 illustrates an example
distribution for a dataset of 10 labels distributed over 10 nodes
with a concentration parameter of α = 0.1.

3) Network topology: To generate the necessary network
topologies, defining the relations between honest nodes,
we employed random geometric graphs. Random geometric
graphs are are constructed by randomly placing points, which
correspond to nodes, in a grid. Two nodes are connected by
an edge if and only if the euclidean distance between the
corresponding points of these nodes is smaller than some
predefined constant. To enforce the max node degree bound
d, random edges are removed from the random geometric
graph, such that all honest nodes remain connected through
a single connected component. The locations of attack edges
are found using the K-medoids-based methodology described
in Section IV-C. The code used for generating these network
topologies can be found in our published code repository
[50]. Furthermore, during our experiments, we assume a static
network topology. That is, no nodes will leave or join the
network during training, including any Sybils.

B. Effect of dataset

1) Setup: We evaluate SybilWall’s performance on different
datasets, allowing us to observe how SybilWall is affected by
a varying complexity in both the dataset and the model. Note
that this experiment has been performed using the default
parameters listed in Table II and using the datasets, models
and learning rates listed in Table I.

2) Results: Figure 7 demonstrates the effect of varying
the dataset on the converged accuracy and attack score. We
observe clearly that CIFAR-10, arguably the most challenging
dataset in this work, obtains a significantly lower accuracy
compared to simpler datasets, such as MNIST. This can be ex-
plained by the fact that training samples of easier datasets have
less overlap over the different output classes, and individual
nodes are therefore less likely to counteract their neighbours.

A noteworthy observation with regard to the attack score of
the label-flipping attack in Figure 7a is that the datasets requir-
ing more sophisticated models, such as convolutional neural
networks, are generally more susceptible to the label-flipping
attack compared to the simpler models, such as single layer
neural networks. Due to smaller number of trainable weights in
simpler models, it is easier to distinguish similarities between
Sybil model histories of simpler models compared to more
sophisticated models, which show more diversity. While some
fraction of the higher attack score in complex models can
be attributed to the more challenging classification task, later
experiments show that the attack score can be significantly
reduced under certain conditions (Sections VI-E and VI-F).

Considering the results from the backdoor attack depicted
in Figure 7c and 7d, it is apparent that all attack scores
demonstrate an increasing trend over a longer amount of time
(note the difference between the number of rounds between the
evaluation on the label-flipping attack and the backdoor attack
attack). This finding suggests that the aggregation technique
performed to obtain a node’s model history does not always
provide a reliable reflection of the node’s intentions. However,
the time required for the attack score to achieve convergence
is significantly longer than the time required for convergence
of the accuracy for most datasets. Therefore, it can be argued
that nodes should stop the training process once the accuracy
has converged or decreases.

C. Comparison with different techniques

1) Setup: We evaluate SybilWall’s performance relative
to a number of different techniques focused on mitigating
Sybil poisoning attacks or Byzantine attacks in general. These
techniques are the following:

i. FedAvg [9]: Naively averages all models. This algorithm
was the first proposed federated learning aggregation al-
gorithm and will serve as baseline during our experiments.

ii. FoolsGold [1]: Detects Sybil models among its neighbours
by assuming that Sybil model histories demonstrate high
similarity. This algorithm is the main inspiration for
SybilWall.

iii. Krum [44]: A popular algorithm which aims to exclude
byzantine models by selecting the model which has the

9

0

25

50

75

100

0 100 200 300 400

Round

A
cc

ur
ac

y
(%

)

FedAvg
FoolsGold
Repple
Krum
Multi−krum
Median

(a) Accuracy label-flipping attack

0

25

50

75

100

0 100 200 300 400

Round

A
tta

ck
 r

at
e

(%
)

FedAvg
FoolsGold
Repple
Krum
Multi−krum
Median

(b) Attack score label-flipping attack

0

25

50

75

100

0 100 200 300 400

Round

A
cc

ur
ac

y
(%

)

FedAvg
FoolsGold
Repple
Krum
Multi−krum
Median

(c) Accuracy backdoor attack

0

25

50

75

100

0 100 200 300 400

Round

A
tta

ck
 r

at
e

(%
)

FedAvg
FoolsGold
Repple
Krum
Multi−krum
Median

(d) Attack score backdoor attack

Figure 8: Comparison of SybilWall against different techniques on ϕ = 1. Results generated using the FashionMNIST [41]
dataset.

0

25

50

75

100

0 100 200 300 400

Round

A
cc

ur
ac

y
(%

)

FedAvg
FoolsGold
Repple
Krum
Multi−krum
Median

(a) Accuracy label-flipping attack

0

25

50

75

100

0 100 200 300 400

Round

A
tta

ck
 r

at
e

(%
)

FedAvg
FoolsGold
Repple
Krum
Multi−krum
Median

(b) Attack score label-flipping attack

0

25

50

75

100

0 100 200 300 400

Round
A

cc
ur

ac
y

(%
)

FedAvg
FoolsGold
Repple
Krum
Multi−krum
Median

(c) Accuracy backdoor attack

0

25

50

75

100

0 100 200 300 400

Round

A
tta

ck
 r

at
e

(%
)

FedAvg
FoolsGold
Repple
Krum
Multi−krum
Median

(d) Attack score backdoor attack

Figure 9: Comparison of SybilWall against different techniques on ϕ = 4. Results generated using the FashionMNIST [41]
dataset.

smallest sum of euclidean distances to its n−f−2 closest
neighbours.

iv. Multi-krum [44]: Similar to krum, but averages the m
models with the lowest sum of euclidian distances to its
n− f − 2 closest neighbours.

v. Median [69]: Computes the element-wise median of all
models and thereby excluding outliers.

During this experiment, we alternated the attack edge density
between ϕ = 1 and ϕ = 4, and fixated the dataset to
FashionMNIST.

2) Results: Figure 8 shows the results of SybilWall com-
pared to different techniques using an attack edge density
ϕ = 1. We observe that SybilWall always scores among the
best performing algorithms in terms of accuracy. Especially
considering the label-flipping attack, SybilWall achieves the
highest accuracy among all evaluated techniques. Considering
the label-flipping attack, we find that SybilWall successfully
mitigates the attack, similarly to some of the other evaluated
techniques. In the backdoor attack, we observe the same
increasing pattern as in the previous experiment on the effect
of the datasets in Section VI-B; the attack score starts at a
low point and increases gradually as the training progresses.
However, while the median aggregation algorithm undoubtedly
achieves the strongest backdoor attack mitigation, we claim
that SybilWall still performs better than other algorithms,
as the accuracy has converged by the time the attack score
reaches significantly dangerous values.

Figure 9 shows the results of SybilWall compared to differ-
ent techniques using a higher attack edge density of ϕ = 4.
These results clearly demonstrate how most aggregation algo-
rithms succumb under the employment of a large-scale Sybil
attack. Considering the accuracy of both the label-flipping at-
tack and backdoor attack, we observe that the accuracy of most
algorithms is higher when employing the backdoor attack.
This phenomenon can be explained due to the fact that the
adversary is not actively attempting to decrease the accuracy
of the model, but only tries to insert an activation pattern,
which was highly successful these algorithms. However, both
FoolsGold and SybilWall seem to be wholly unaffected by
both attacks. This is due to the FoolsGold subfunction, which
was specifically designed to mitigate Sybil poisoning attacks
on nodes with knowledge of more than a single Sybil, which
is evidently the case for an attack edge density of ϕ = 4.

Considering both results in Figure 8 and 9, we find that
SybilWall does not outperform all evaluated algorithms in
every scenarios, but always scores among the best, arguably
making it the most Sybil poisoning resilient algorithm overall.
A surprising observation is that most other algorithms score
better under a backdoor attack with a high attack edge density
compared to a lower attack edge density, while the accuracy
of SybilWall remains constant in both scenarios.

D. Effect of attack edge density

1) Setup: We evaluate SybilWall under a number of dif-
ferent attack edge density configurations. This demonstrates

10

0

25

50

75

100

0 100 200 300 400

Round

A
cc

ur
ac

y
(%

)

φ = 0.1
φ = 0.25
φ = 0.5
φ = 1
φ = 1.5
φ = 2

(a) Accuracy label-flipping attack

0

25

50

75

100

0 100 200 300 400

Round

A
tta

ck
 r

at
e

(%
)

φ = 0.1
φ = 0.25
φ = 0.5
φ = 1
φ = 1.5
φ = 2

(b) Attack score label-flipping attack

0

25

50

75

100

0 100 200 300 400

Round

A
cc

ur
ac

y
(%

)

φ = 0.1
φ = 0.25
φ = 0.5
φ = 1
φ = 1.5
φ = 2

(c) Accuracy backdoor attack

0

25

50

75

100

0 100 200 300 400

Round

A
tta

ck
 r

at
e

(%
)

φ = 0.1
φ = 0.25
φ = 0.5
φ = 1
φ = 1.5
φ = 2

(d) Attack score backdoor attack

Figure 10: Accuracy and attack score for the label-flipping attack and backdoor attack on different attack edge densities. Results
generated using the MNIST [47] dataset.

0

25

50

75

100

0 100 200 300

Round

A
cc

ur
ac

y
(%

)

α = 0.05
α = 0.1
α = 0.25
α = 0.5
α = 1
IID

(a) Accuracy label-flipping attack

0

25

50

75

100

0 100 200 300

Round

A
tta

ck
 r

at
e

(%
)

α = 0.05
α = 0.1
α = 0.25
α = 0.5
α = 1
IID

(b) Attack score label-flipping attack

0

25

50

75

100

0 100 200 300

Round
A

cc
ur

ac
y

(%
)

α = 0.05
α = 0.1
α = 0.25
α = 0.5
α = 1
IID

(c) Accuracy backdoor attack

0

25

50

75

100

0 100 200 300

Round

A
tta

ck
 r

at
e

(%
)

α = 0.05
α = 0.1
α = 0.25
α = 0.5
α = 1
IID

(d) Attack score backdoor attack

Figure 11: Accuracy and attack score for the label-flipping attack and backdoor attack of different data distributions, indicated
by the concentration parameter α of the Dirichlet distribution. Results generated using the CIFAR-10 [39] dataset.

the effect an attacker can exercise on the network employing
different Sybil attack strategies. MNIST is fixated as the
dataset during this experiment. The attack edge density ϕ is
varied within the range ϕ ∈ [0.1, 2].

2) Results: Figure 10 illustrates the effect of various attack
edge density values on the label-flipping attack and backdoor
attack. It is apparent that the attack edge density has little
effect on the converged accuracy. On the other hand, the trend
of the attack score shows that network topologies with lower
attack edge densities are more prone to the label-flipping
attack despite the smaller number of generated Sybils for
lower values of ϕ. This clearly demonstrates the effect of
the gossiping mechanism in reducing the impact of Sybil
poisoning attacks.

Similarly to the label-flipping attack, we observe the success
of SybilWall’s gossiping mechanism as the attack score gener-
ally decreases as the attack edge density grows. Furthermore,
as one would expect, the accuracy also does not seem to be
affected by different values of ϕ.

E. Effect of data distribution

1) Setup: The method in which the data is distributed over
the nodes might influence the attack score and the accuracy of
the trained models. To explore this effect, we evaluate Sybil-
Wall’s performance under a variety of data distributions. More
specifically, we vary the data distribution between i.i.d. and
non-i.i.d. (Dirchlet-based). For the non-i.i.d. scenario, we vary

the concentration parameter α within the range α ∈ [0.05, 1].
Furthermore, we fixate the dataset on CIFAR-10.

2) Results: Figure 11 shows the effects of different con-
centration parameters α on the convergence of the training
process on the CIFAR-10 dataset. We observe in both the
label-flipping attack and backdoor attack that the accuracy
increases as the data is more uniformly distributed, as one
would anticipate. Furthermore, the attack score of the label-
flipping attack demonstrates how the attacker becomes less
successful with more i.i.d. data. On the one hand, one would
expect a weaker Sybil resilience when the data is less non-i.i.d.
resulting from false positives among honest nodes. However,
we found that nodes more easily counteract Sybils when they
possess data belonging to an adversary’s target classes. Lastly,
the data distribution surprisingly does not seem to have a
significant effect on the attack score of the backdoor attack,
as no clear trend emerges when varying the data distribution.

F. Enhancing SybilWall’s defensive capabilities

1) Setup: Given the increasing, although impeded, attack
score demonstrated for the backdoor attack in Section VI-B
for more complex datasets, we consider several augmentations
for improving SybilWall’s defensive capabilities. These aug-
mentations include:

i. Median: given the resilience of the Median [69] algorithm
in Section VI-C against attack edge density ϕ = 1, we
attempt to combine the Median approach with SybilWall.
This is achieved by initially employing SybilWall to

11

compute a non-normalized aggregation weight within the
range [0, 1], followed by the execution of the Median
algorithm on the highest-scoring 50% models.

ii. Weighted median: A variant of the Median-based ap-
proach, in which scores computed by SybilWall are
adopted as weights for a weighted median aggregation.

iii. Krum-filter: based on the suggestion by [1], we combine
SybilWall with Krum, such that the model with the lowest
Krum score receives an aggregation weight of 0.

iv. Distance-filter??? (if we have time). Only consider the
50% closest models (inspired by [57]?).

We also provide the trends for plain SybilWall to serve
as a baseline. The dataset is fixated to SVHN during this
experiment.

2) Results: Figure 12 illustrates the effect of enhancing
SybilWall with a number of methodologies. Firstly, we find
that plain SybilWall achieves the highest accuracy overall,
but the worst Sybil resilience. While each of the evaluated
methodologies improves SybilWall’s defensive capabilities, a
trade-off occurs in which accuracy is sacrificed to obtain
improved Sybil resilience. Especially the Sybil resilience of
the weighted median is unmatched, but achieves considerably
lower accuracy compared to the alternative methodologies.
The Krum-filter based approach seems to obtain comparable
accuracy as plain SybilWall, but obtains the worst Sybil re-
silience of the evaluated enhancements. Arguably, the median-
based methodology shows the most promising results, as
it achieves to consistently limit the attack score to levels
comparable of that of the weighted median methodology, while
showing significant improvement on the obtained accuracy.

VII. DISCUSSION

During the experimental evaluation of SybilWall, we found
that SybilWall does not negatively affect the convergence of
the accuracy on 4 widely adopted datasets. Moreover, the
converged accuracy obtained by SybilWall is similar to that
achieved by the FedAvg algorithm in a federated learning
setting (see Figures 3 and 7). Besides obtaining satisfactory
accuracy on all datasets, we also found that SybilWall sig-
nificantly outperforms alternative algorithms for mitigating
(Sybil) poisoning attacks in decentralized learning in both
obtained accuracy and attack score. While the attack score
of the backdoor attack shows a rising trend, we assert that the
rate at which this occurs is sufficiently diminished to attribute
SybilWall with the required performance to be regarded as
state-of-the-art.

We argue that this rising trend originates from the knowl-
edge loss induced by the train-aggregate loop depicted in
Figure 2. Building upon Assumption 2 (Sybils show similar
models), the implicit assumption is made that summed Sybil
model histories show a high degree of similarity as well. It
would arguably be more effective to sum the model post-
training gradients to generate a node’s history, rather than the
model itself. Such an approach would provide a more accurate
representation of a node’s intentions as the model history
would directly correspond with a node’s training data and

0

25

50

75

100

0 100 200 300

Round

A
cc

ur
ac

y
(%

)

Plain
Weigted median
Median
Krum

(a) Accuracy label-flipping attack

0

25

50

75

100

0 100 200 300

Round

A
tta

ck
 r

at
e

(%
)

Plain
Weigted median
Median
Krum

(b) Attack score label-flipping attack

0

25

50

75

100

0 100 200 300

Round

A
cc

ur
ac

y
(%

)

Plain
Weigted median
Median
Krum

(c) Accuracy backdoor attack

0

25

50

75

100

0 100 200 300

Round

A
tta

ck
 r

at
e

(%
)

Plain
Weigted median
Median
Krum

(d) Attack score backdoor attack

Figure 12: Accuracy and attack score of the label-flipping
attack and backdoor attack for different possible enhancements
of SybilWall. Results generated using the SVHN [49] dataset.

would show in which direction a node aims to contribute to
the aggregated model. As this representation does not include
the aggregated model, it is also less affected by neighbouring
nodes. However, obtaining a node’s post-training gradients is
a non-trivial task in the setting of decentralized learning, as
there exists no method of validating the aggregated model
which was trained to generate the gradients without sharing the
corresponding training data. As an example, a malicious node
could claim to start training on a randomly generated model
mr which resulted in the training gradients g, such that the
sum of these is equal to the malicious model ms = mr + g.
An adversary could trivially manipulate the sums of gradients
to make Sybil models seem highly diverse. This drawback is
absent in federated learning, as the model trained by nodes
is equal for all nodes every round and is not created through
aggregation on participating nodes (see Figure 2). Through
making additional assumptions, a methodology for alleviating
this drawback is described in Section VII-A.

todo: Existing methods of discovering convergence in DL
and stopping as soon as it has been reached to limit the effect
of the backdoor attack?

During the evaluation of the effect of the number of Sybils
on the attack score in Section VI-D, we found that decreasing
the number of Sybils increases the attack score. This implies
that we eliminated the need of amplifying a poisoning attack
with the Sybil attack, as employing Sybils would result in
a lower attack score. Reducing the Sybil poisoning attack
to a mere poisoning attack, which cannot be deflected by
SybilWall, requires the usage of alternative poisoning attack

12

mitigation algorithms. During evaluation, we considered en-
hancing SybilWall with a number of such alternative algo-
rithms through the use of chained aggregation methodologies
in Section VI-F. In such a chained aggregation, the last step
of SybilWall’s aggregation method, a weighted average, is
substituted with one of the listed methodologies. We found
that while all enhancements demonstrate an increased Sybil
resilience, they all require a sacrifice in accuracy, likely due
to the increased number of false positives among individual
weights caused by the non-i.i.d training sets. Considering that
accuracy is often the primary goal in machine learning [70],
the usage of such enhancements is likely not justified in most
applications. We leave enhancing SybilWall with a poisoning
attack mitigation algorithm without compromising accuracy as
a possible research direction for future work.

Furthermore, SybilWall has been designed under Assump-
tion 2, which states that Sybil model histories show more
similarity compared to honest model updates. We found that
SybilWall shows more Sybil resilience in more i.i.d. environ-
ments in Section VI-E, despite the fact that all honest nodes
will share more similar models, thus potentially resulting
in more false positives. However, it is unclear if SybilWall
shows sufficient resilience against adversaries violating As-
sumption 4, stating that the creation of additional Sybils by
the adversary does not increase the adversarial computing
power. Adversaries with extensive computational capabilities,
such as click-farms [71], may well be able to train several
malicious models within one training round, thereby possibly
violating Assumption 2. A possible future research direction
for alleviating this risk is proposed in Section VII-A. Another
method of creating more diverse Sybil model histories is
through the introduction of random noise in the irrelevant
weights of the model, as suggested by [1]. More research is
required to filter out these irrelevant weights, which may be
achieved through a number of approaches, such as layer-wise
relevance propagation [72], weight magnitude filtering [73] or
empirical weight importance [74].

A. Future research: replicated aggregation

As described previously, SybilWall’s Sybil resilience against
backdoor attack could potentially be drastically increased
through the use of summed model gradients as a model’s
history instead of summed models, as it provides a more direct
representation of a node’s intentions. To obtain the model
gradients, one requires the ability to obtain the intermedi-
ary model between aggregation and training. However, it is
challenging to obtain this pre-training model through reverse-
engineering, especially considering that no node has access to
another node’s training dataset. Instead, we suggest an alter-
native direction, which entails replicated aggregation. Using
this approach, both the neighbours of node i and node i itself
perform the aggregation of node i. By doing so, neighbouring
nodes gain the power to determine the intermediary model
between aggregation and training.

First, this adapted approach assumes the existence of a
global registration, containing cryptographically secure public

records of all edges in the network, such as a blockchain
ledger, e.g. TrustChain [75]. This allows any node to obtain
the identities of their second neighbours, without adversaries
being able to provide false or inconsistent information about its
neighbours. Furthermore, all nodes must possess all required
information to perform aggregation for its neighbours’ models,
implying that any node requires direct communication with
its second neighbours. Once node i possesses all information
required to perform its own aggregation, it starts training the
aggregated model.

After the training has completed, every node i sends the
gradients and its aggregated model to its set of neighbours
ni and second neighbours n′

i. Consequently, every neighbour
j ∈ ni sends their own version of the aggregated model of
node i to its neighbours nj \ i (= nj ∩ n′

i). This allows node
k ∈ n′

i to verify the aggregated model on j’s behalf and obtain
the trained model of node i required for the aggregation for
their shared neighbour(s) nk ∩ ni without requiring them to
perform the aggregation of node i as well. By doing so, node
j gains no advantage in providing node k with a malicious
model over simply performing malicious aggregation in plain
decentralized learning, as it only affects its own aggregation.

While this approach suggests a method of obtaining the
aggregated model and thereby enables (a variant of) SybilWall
to compose the model history by the sum of trained gradients,
future work is required to evaluate the effectiveness and
identify potential drawbacks of this method, other than the
increased communication load.

VIII. CONCLUSION

REFERENCES

[1] C. Fung, C. J. M. Yoon, and I. Beschastnikh, “Mitigating sybils
in federated learning poisoning,” CoRR, vol. abs/1808.04866, 2018.
[Online]. Available: http://arxiv.org/abs/1808.04866

[2] E. V. Polyakov, M. S. Mazhanov, A. Y. Rolich, L. S. Voskov, M. V.
Kachalova, and S. V. Polyakov, “Investigation and development of
the intelligent voice assistant for the internet of things using machine
learning,” in 2018 Moscow Workshop on Electronic and Networking
Technologies (MWENT), 2018, pp. 1–5.

[3] B. T.K., C. S. R. Annavarapu, and A. Bablani, “Machine
learning algorithms for social media analysis: A survey,” Computer
Science Review, vol. 40, p. 100395, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1574013721000356

[4] X. Wang and Y. Wang, “Improving content-based and hybrid music
recommendation using deep learning,” in Proceedings of the 22nd ACM
International Conference on Multimedia, ser. MM ’14. New York,
NY, USA: Association for Computing Machinery, 2014, p. 627–636.
[Online]. Available: https://doi.org/10.1145/2647868.2654940

[5] S. A. Salloum, M. Alshurideh, A. Elnagar, and K. Shaalan, “Machine
learning and deep learning techniques for cybersecurity: A review,”
in Proceedings of the International Conference on Artificial Intelli-
gence and Computer Vision (AICV2020), A.-E. Hassanien, A. T. Azar,
T. Gaber, D. Oliva, and F. M. Tolba, Eds. Cham: Springer International
Publishing, 2020, pp. 50–57.

[6] J. Prusa, T. M. Khoshgoftaar, and N. Seliya, “The effect of dataset size
on training tweet sentiment classifiers,” in 2015 IEEE 14th International
Conference on Machine Learning and Applications (ICMLA), 2015, pp.
96–102.

[7] J. Hestness, S. Narang, N. Ardalani, G. F. Diamos, H. Jun,
H. Kianinejad, M. M. A. Patwary, Y. Yang, and Y. Zhou, “Deep
learning scaling is predictable, empirically,” CoRR, vol. abs/1712.00409,
2017. [Online]. Available: http://arxiv.org/abs/1712.00409

13

[8] A. Goldsteen, G. Ezov, R. Shmelkin, M. Moffie, and A. Farkash, “Data
minimization for gdpr compliance in machine learning models,” AI and
Ethics, pp. 1–15, 2021.

[9] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y.
Arcas, “Communication-Efficient Learning of Deep Networks from
Decentralized Data,” in Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, ser. Proceedings
of Machine Learning Research, A. Singh and J. Zhu, Eds., vol. 54.
PMLR, 20–22 Apr 2017, pp. 1273–1282. [Online]. Available:
https://proceedings.mlr.press/v54/mcmahan17a.html

[10] J. Janai, F. Güney, A. Behl, A. Geiger et al., “Computer vision for au-
tonomous vehicles: Problems, datasets and state of the art,” Foundations
and Trends® in Computer Graphics and Vision, vol. 12, no. 1–3, pp.
1–308, 2020.

[11] P. Navarro, C. Fernández, R. Borraz, and D. Alonso, “A machine
learning approach to pedestrian detection for autonomous vehicles
using high-definition 3d range data,” Sensors, vol. 17, no. 12, p. 18,
Dec 2016. [Online]. Available: http://dx.doi.org/10.3390/s17010018

[12] A. Hard, K. Rao, R. Mathews, F. Beaufays, S. Augenstein, H. Eichner,
C. Kiddon, and D. Ramage, “Federated learning for mobile keyboard
prediction,” CoRR, vol. abs/1811.03604, 2018. [Online]. Available:
http://arxiv.org/abs/1811.03604

[13] T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li, N. Kong,
D. Ramage, and F. Beaufays, “Applied federated learning: Improving
google keyboard query suggestions,” CoRR, vol. abs/1812.02903, 2018.
[Online]. Available: http://arxiv.org/abs/1812.02903

[14] M. Chen, R. Mathews, T. Ouyang, and F. Beaufays, “Federated
learning of out-of-vocabulary words,” CoRR, vol. abs/1903.10635,
2019. [Online]. Available: http://arxiv.org/abs/1903.10635

[15] Y. Cheng, Y. Liu, T. Chen, and Q. Yang, “Federated learning for privacy-
preserving ai,” Communications of the ACM, vol. 63, no. 12, pp. 33–36,
2020.

[16] L. Lyu and C. Chen, “A novel attribute reconstruction attack
in federated learning,” CoRR, vol. abs/2108.06910, 2021. [Online].
Available: https://arxiv.org/abs/2108.06910

[17] H. Yang, M. Ge, K. Xiang, and J. Li, “Using highly compressed
gradients in federated learning for data reconstruction attacks,” IEEE
Transactions on Information Forensics and Security, vol. 18, pp. 818–
830, 2023.

[18] H. S. Sikandar, H. Waheed, S. Tahir, S. U. R. Malik, and
W. Rafique, “A detailed survey on federated learning attacks and
defenses,” Electronics, vol. 12, no. 2, 2023. [Online]. Available:
https://www.mdpi.com/2079-9292/12/2/260

[19] P. Qiu, X. Zhang, S. Ji, Y. Pu, and T. Wang, “All you need is hashing:
Defending against data reconstruction attack in vertical federated
learning,” 2022. [Online]. Available: https://arxiv.org/abs/2212.00325

[20] J. Hamer, M. Mohri, and A. T. Suresh, “FedBoost: A communication-
efficient algorithm for federated learning,” in Proceedings of the 37th
International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, H. D. III and A. Singh, Eds., vol.
119. PMLR, 13–18 Jul 2020, pp. 3973–3983. [Online]. Available:
https://proceedings.mlr.press/v119/hamer20a.html

[21] S. Kadhe, N. Rajaraman, O. O. Koyluoglu, and K. Ramchandran,
“Fastsecagg: Scalable secure aggregation for privacy-preserving
federated learning,” CoRR, vol. abs/2009.11248, 2020. [Online].
Available: https://arxiv.org/abs/2009.11248

[22] Y. Qi, M. S. Hossain, J. Nie, and X. Li, “Privacy-preserving blockchain-
based federated learning for traffic flow prediction,” Future Generation
Computer Systems, vol. 117, pp. 328–337, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X2033065X

[23] I. Hegedűs, G. Danner, and M. Jelasity, “Decentralized
learning works: An empirical comparison of gossip learning
and federated learning,” Journal of Parallel and Distributed
Computing, vol. 148, pp. 109–124, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0743731520303890

[24] J. Hou, F. Wang, C. Wei, H. Huang, Y. Hu, and N. Gui, “Credibil-
ity assessment based byzantine-resilient decentralized learning,” IEEE
Transactions on Dependable and Secure Computing, pp. 1–12, 2022.

[25] V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, “Data poisoning attacks
against federated learning systems,” in Computer Security – ESORICS
2020, L. Chen, N. Li, K. Liang, and S. Schneider, Eds. Cham: Springer
International Publishing, 2020, pp. 480–501.

[26] N. M. Jebreel, J. Domingo-Ferrer, D. Sánchez, and A. Blanco-Justicia,
“Defending against the label-flipping attack in federated learning,”
2022. [Online]. Available: https://arxiv.org/abs/2207.01982

[27] D. Li, W. E. Wong, W. Wang, Y. Yao, and M. Chau, “Detection and
mitigation of label-flipping attacks in federated learning systems with
kpca and k-means,” in 2021 8th International Conference on Dependable
Systems and Their Applications (DSA), 2021, pp. 551–559.

[28] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How
to backdoor federated learning,” in Proceedings of the Twenty Third
International Conference on Artificial Intelligence and Statistics, ser.
Proceedings of Machine Learning Research, S. Chiappa and R. Calandra,
Eds., vol. 108. PMLR, 26–28 Aug 2020, pp. 2938–2948. [Online].
Available: https://proceedings.mlr.press/v108/bagdasaryan20a.html

[29] Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan, “Can you
really backdoor federated learning?” CoRR, vol. abs/1911.07963, 2019.
[Online]. Available: http://arxiv.org/abs/1911.07963

[30] C. Wu, X. Yang, S. Zhu, and P. Mitra, “Mitigating backdoor attacks
in federated learning,” CoRR, vol. abs/2011.01767, 2020. [Online].
Available: https://arxiv.org/abs/2011.01767

[31] J. R. Douceur, “The sybil attack,” in Peer-to-Peer Systems, P. Druschel,
F. Kaashoek, and A. Rowstron, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2002, pp. 251–260.

[32] Y. Mao, D. Data, S. Diggavi, and P. Tabuada, “Decentralized learning
robust to data poisoning attacks,” in 2022 IEEE 61st Conference on
Decision and Control (CDC), 2022, pp. 6788–6793.

[33] C. Hu, J. Jiang, and Z. Wang, “Decentralized federated learning:
A segmented gossip approach,” CoRR, vol. abs/1908.07782, 2019.
[Online]. Available: http://arxiv.org/abs/1908.07782

[34] I. Hegedűs, G. Danner, and M. Jelasity, “Decentralized
learning works: An empirical comparison of gossip learning
and federated learning,” Journal of Parallel and Distributed
Computing, vol. 148, pp. 109–124, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0743731520303890

[35] Z. Tang, S. Shi, B. Li, and X. Chu, “Gossipfl: A decentralized federated
learning framework with sparsified and adaptive communication,” IEEE
Transactions on Parallel and Distributed Systems, vol. 34, no. 3, pp.
909–922, 2023.

[36] M. de Vos, A. Dhasade, A.-M. Kermarrec, E. Lavoie, and J. Pouwelse,
“Modest: Bridging the gap between federated and decentralized learning
with decentralized sampling,” 2023.

[37] I. Hegedűs, G. Danner, and M. Jelasity, “Gossip learning as a decentral-
ized alternative to federated learning,” in Distributed Applications and
Interoperable Systems, J. Pereira and L. Ricci, Eds. Cham: Springer
International Publishing, 2019, pp. 74–90.

[38] A. G. Roy, S. Siddiqui, S. Pölsterl, N. Navab, and C. Wachinger,
“Braintorrent: A peer-to-peer environment for decentralized federated
learning,” CoRR, vol. abs/1905.06731, 2019. [Online]. Available:
http://arxiv.org/abs/1905.06731

[39] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (cana-
dian institute for advanced research).” [Online]. Available:
http://www.cs.toronto.edu/ kriz/cifar.html

[40] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[41] H. Xiao, K. Rasul, and R. Vollgraf. (2017) Fashion-mnist: a
novel image dataset for benchmarking machine learning algorithms.
Https://github.com/zalandoresearch/fashion-mnist. [Online]. Available:
https://github.com/zalandoresearch/fashion-mnist

[42] B. N. Levine, C. Shields, and N. B. Margolin, “A survey of solutions
to the sybil attack,” University of Massachusetts Amherst, Amherst, MA,
vol. 7, p. 224, 2006.

[43] D. N. Tran, B. Min, J. Li, and L. Subramanian, “Sybil-resilient online
content voting.” in NSDI, vol. 9, no. 1, 2009, pp. 15–28.

[44] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Ma-
chine learning with adversaries: Byzantine tolerant gradient descent,” in
Advances in Neural Information Processing Systems, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017.

[45] R. Church and C. ReVelle, “The maximal covering location problem,”
in Papers of the regional science association, vol. 32, no. 1. Springer-
Verlag Berlin/Heidelberg, 1974, pp. 101–118.

[46] N. Megiddo, E. Zemel, and S. L. Hakimi, “The maximum
coverage location problem,” SIAM Journal on Algebraic Discrete

14

Methods, vol. 4, no. 2, pp. 253–261, 1983. [Online]. Available:
https://doi.org/10.1137/0604028

[47] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141–142, 2012.

[48] C. Thapa, M. A. P. Chamikara, and S. Camtepe, “Splitfed: When
federated learning meets split learning,” CoRR, vol. abs/2004.12088,
2020. [Online]. Available: https://arxiv.org/abs/2004.12088

[49] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and
A. Y. Ng, “Reading digits in natural images with unsupervised
feature learning,” in NIPS Workshop on Deep Learning and
Unsupervised Feature Learning 2011, 2011. [Online]. Available:
http://ufldl.stanford.edu/housenumbers/nips2011 housenumbers.pdf

[50] T. Werthenbach, “Sybil-resilient-decentralized-learning,”
https://github.com/ThomasWerthenbach/Sybil-Resilient-Decentralized-
Learning, 2023.

[51] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style,
high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32. Curran Associates, Inc., 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[52] Tribler, “Python implementation of tribler’s ipv8 p2p-networking layer,”
https://github.com/Tribler/py-ipv8, 2023.

[53] ——, “Experiment runner framework for ipv8 and tribler,”
https://github.com/Tribler/gumby, 2022.

[54] H. Bal, D. Epema, C. de Laat, R. van Nieuwpoort, J. Romein, F. Seinstra,
C. Snoek, and H. Wijshoff, “A medium-scale distributed system for
computer science research: Infrastructure for the long term,” Computer,
vol. 49, no. 05, pp. 54–63, may 2016.

[55] C. Pappas, D. Chatzopoulos, S. Lalis, and M. Vavalis, “Ipls: A frame-
work for decentralized federated learning,” in 2021 IFIP Networking
Conference (IFIP Networking), 2021, pp. 1–6.

[56] S. Alqahtani and M. Demirbas, “Performance analysis and comparison
of distributed machine learning systems,” CoRR, vol. abs/1909.02061,
2019. [Online]. Available: http://arxiv.org/abs/1909.02061

[57] J. Verbraeken, M. de Vos, and J. Pouwelse, “Bristle:
Decentralized federated learning in byzantine, non-i.i.d. environ-
ments,” CoRR, vol. abs/2110.11006, 2021. [Online]. Available:
https://arxiv.org/abs/2110.11006

[58] H. Ye, L. Liang, and G. Y. Li, “Decentralized federated learning with
unreliable communications,” IEEE Journal of Selected Topics in Signal
Processing, vol. 16, no. 3, pp. 487–500, 2022.

[59] C. Hu, J. Jiang, and Z. Wang, “Decentralized federated learning:
A segmented gossip approach,” CoRR, vol. abs/1908.07782, 2019.
[Online]. Available: http://arxiv.org/abs/1908.07782

[60] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer
learning,” Journal of Big data, vol. 3, no. 1, pp. 1–40, 2016.

[61] T.-C. Chiu, Y.-Y. Shih, A.-C. Pang, C.-S. Wang, W. Weng, and C.-T.
Chou, “Semisupervised distributed learning with non-iid data for aiot
service platform,” IEEE Internet of Things Journal, vol. 7, no. 10, pp.
9266–9277, 2020.

[62] K. Hsieh, A. Phanishayee, O. Mutlu, and P. Gibbons, “The non-IID
data quagmire of decentralized machine learning,” in Proceedings of the
37th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, H. D. III and A. Singh, Eds., vol.
119. PMLR, 13–18 Jul 2020, pp. 4387–4398. [Online]. Available:
https://proceedings.mlr.press/v119/hsieh20a.html

[63] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” CoRR, vol. abs/1806.00582, 2018. [Online].
Available: http://arxiv.org/abs/1806.00582

[64] Y. Chen, Y. Ning, M. Slawski, and H. Rangwala, “Asynchronous online
federated learning for edge devices with non-iid data,” in 2020 IEEE
International Conference on Big Data (Big Data), 2020, pp. 15–24.

[65] C. Briggs, Z. Fan, and P. Andras, “Federated learning with hierarchical
clustering of local updates to improve training on non-iid data,” in 2020
International Joint Conference on Neural Networks (IJCNN), 2020, pp.
1–9.

[66] G. L. Dirichlet, “Über die reduction der positiven quadratischen formen
mit drei unbestimmten ganzen zahlen.” Journal für die reine und
angewandte Mathematik (Crelles Journal), vol. 1850, no. 40, pp. 209–
227, 1850. [Online]. Available: https://doi.org/10.1515/crll.1850.40.209

[67] L. Gao, H. Fu, L. Li, Y. Chen, M. Xu, and C.-Z. Xu, “Feddc: Federated
learning with non-iid data via local drift decoupling and correction,”
2022.

[68] X. Mu, Y. Shen, K. Cheng, X. Geng, J. Fu, T. Zhang,
and Z. Zhang, “Fedproc: Prototypical contrastive federated
learning on non-iid data,” Future Generation Computer
Systems, vol. 143, pp. 93–104, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X23000262

[69] D. Yin, Y. Chen, K. Ramchandran, and P. L. Bartlett,
“Byzantine-robust distributed learning: Towards optimal statistical
rates,” CoRR, vol. abs/1803.01498, 2018. [Online]. Available:
http://arxiv.org/abs/1803.01498

[70] S. Kaur and S. Jindal, “A survey on machine learning algorithms,” Int J
Innovative Res Adv Eng (IJIRAE), vol. 3, no. 11, pp. 2349–2763, 2016.

[71] E. Drott, “Fake streams, listening bots, and click farms: Counterfeiting
attention in the streaming music economy,” American Music, vol. 38,
no. 2, pp. 153–175, 2020.

[72] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller,
and W. Samek, “On pixel-wise explanations for non-linear
classifier decisions by layer-wise relevance propagation,” PLOS
ONE, vol. 10, no. 7, pp. 1–46, 07 2015. [Online]. Available:
https://doi.org/10.1371/journal.pone.0130140

[73] M. C. Mozer and P. Smolensky, “Skeletonization: A technique for
trimming the fat from a network via relevance assessment,” in Advances
in Neural Information Processing Systems, D. Touretzky, Ed., vol. 1.
Morgan-Kaufmann, 1988.

[74] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method
for deep neural network compression,” in Proceedings of the IEEE
International Conference on Computer Vision (ICCV), Oct 2017.

[75] P. Otte, M. de Vos, and J. Pouwelse, “Trustchain: A
sybil-resistant scalable blockchain,” Future Generation Computer
Systems, vol. 107, pp. 770–780, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X17318988

15

