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Introduction

= Recent Al developments
= Training requires large datasets

= Privacy law prohibit mass user data
collection.

= How does one perform machine learning
on comprehensive datasets while
respecting privacy rights?
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Federated learning

Central parameter server

4 N
= Training performed on end-user devices — °
4 N
- Real user data L o
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Centralized model aggregator
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Privacy-enforcing

Synchronous training rounds
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User devices

%
TUDelft



Federated learning training round

Central parameter server

1. Train on local data = o,
2. Send gradients to central parameter server ;_ 02
3. Server aggregates <
4. Send model to edge devices T
5. Repeat

WV
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User devices
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Federated learning

Federated learning

/1N

Advantages
Privacy-enforcing
Real-user data

Drawbacks
Scalability
Single point of failure
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Federated learning vs decentralized learning

Federated learning Decentralized learning
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Advantages
Privacy-enforcing
Real-user data

Advantages
Privacy-enforcing
Real-user data
Boundless scalability
No single point of failure

Drawbacks
Scalability
Single point of failure

Drawbacks
Limited context




Decentralized learning

Decentralized
Improved scalability ‘ \ ¢ > ‘ \

= Communication costs A \ A

= Memory capacity
= Aggregation time

Performance similar to federated learning [1] / \
\ v

Limited aggregation context

n
N
N\
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[1] I. Hegedus, G. Danner, and M. Jelasity, "Decentralized learning works: An empirical comparison of gossip learning and federated learning," Journal of Parallel and
Distributed Computing, vol. 148, pp. 109—-124, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0743731520303890



Decentralized learning training loop

1. Train on local data
2. Send to neighbors
3. Aggregate

4. Repeat
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Federated learning vs decentralized learning

I
ceoe A)iﬁ%@i ¢ > eee

Receive Aggregate Train Distribute

————————— Work on client in decentralized learning
Work on client in federated learning
A Received set of models
B Aggregated intermediary model
C Trained model
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Poisoning attack

Label-flipping attack Backdoor attack

Training sample Label Training sample Label

Targeted poisoning attack

= Label-flipping
= Backdoor

Untargeted poisoning attack
= A little i1s enough [1]

= Static optimization attack [2] o

I U D e I ft [1] G.Baruch, M. Baruch, and Y. Goldberg, “A Little Is Enough: Circumventing Defenses For Distributed Learning,” in Advances in Neural Information Processing Systems, 2019, vol. 32.
[Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2019/file/ec1c59141046cd1866bbbcdfb6ae31d4-Paper.pdf
[2] M. Fang, X. Cao, J. Jia, and N. Z. Gong, “Local model poisoning attacks to byzantine-robust federated learning,” in Proceedings of the 29th USENIX Conference on Security Symposium,
2020, pp. 1623-1640.
[3] S. Udeshi, S. Peng, G. Woo, L. Loh, L. Rawshan, and S. Chattopadhyay, Model Agnostic Defence against Backdoor Attacks in Machine Learning. 2022.



Sybil attack

= Adversary creates fake identities (Sybils)

= Adversary increases its influence in the network

= Benign nodes cannot distinguish between benign and Sybill
= Amplifies poisoning attack

Attack edges

D(—%D(—)E D( >D< >E
N/

A4
L Ll
Single attacker Sybil attack
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Problem statement

« Federated learning does not scale
» Federated learning has a single point of failure
= Unstudied Sybil poisoning resilience of decentralized learning

= Contributions:
= Demonstration of inscalability of federated learning
- Effective adversarial strategy
= SybilWall
= Empirical evaluation
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FoolsGold

Poisoner objective

Primary inspiration for SybilWall

Designed for federated learning

High similarity between Sybils

Low similarity between honest nodes

Assign lower weight to similar models

True objective

From [1]
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[1] C. Fung, C.J. M. Yoon, and I. Beschastnikh, “Mitigating Sybils in Federated Learning Poisoning,” CoRR, vol. abs/1808.04866, 2018, [Online]. Available: http://arxiv.org/abs/1808.04866



FoolsGold

= Input for aggregation in round T for every node i € N:

- Model gradient: Aw/

- Model gradient history: ¥T_, Aw!

Model gradients ———

Model gradient

histories

Similarity
function

> Pardoning

> Rescale

)

Logit
function

> Normalize

)

Weighted
average

—
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FoolsGold’s aggregation function

Aggregated
model
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SybilWall architecture

Distant (g_ossm_ed) 3 N
[ model histories l
Network Local database Probabilistic gossiping
(receiving) Neighbors' T . mechanism . .
5 model histories ’ 5 I\j1 7
. LS essage
Aggregation Training composition (tr;“ne;nv:icgli(n )
> Own model ) 9
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SybilWall architecture
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[ model histories l
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1. Aggregation function

* FoolsGold-inspired

= 2 Improvements:

= Support for gossiped model histories

= Nodes trust themselves

Gossiped model histories

N

Models >

Model histories ——>

Similarity
function

J

Own model

.

> Pardoning

> Rescale

)

Logit
function

> Normalize

)

Weighted
average

—
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1. Aggregation function

= Uses model history rather than model gradient history

i
I I
S <
I |
| 1
I

Receive Aggregate Train Distribute

————————— Work on client in decentralized learning
Work on client in federated learning
A Received set of models
B Aggregated intermediary model
C Trained model
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1. Aggregation function

= Input for aggregation in round T for every neighbouring node i € N:

= Model: w/

- Model history: ¥T_, wf

Gossiped model histories

N

Models ——>

Model histories ———

Similarity
function

J

Own model

N

PPardoning Rescale Logit PNormaIize?

function

Weighted
average
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2. Probabilistic gossiping mechanism

= In each round, every node transmits:
= Its own trained model

= A probabilistically selected model history from its local database (gossip)
« The gossiped model is selected using a weighted random selection

= The weights correspond to the exponential distribution, where the distance
to the originating node serves as the parameter d

0.3

P(d) = le=*

0.2

Weight

0.1
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3. Message composition

Omit trained model, as it can be inferred from subsequent model histories

Messages are composed of:

= h;: model history of sender i

* gk gossiped model history of distant node k

= 1;. round number from which model history h; originates

* 1. round number from which gossiped model history g, originates

Each message component is signed by the corresponding node

Downtime and unreachability support
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SybilWall

N
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Dataset Model Learning rate

EXperi mental SEtU p MNIST Single soft-max layer n =0.01

FashionMNIST Single soft-max layer 71 =0.01

= Python-based IPv8 implementation
_ _ SVHN LeNet-5 n = 0.004
= 100 nodes simulation on DAS-6
CIFAR-10 LeNet-5 = 0.004
- 4 datasets !
Evaluated datasets
= Dirichlet-based data distribution
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Experimental setup

= Network topology
= Random geometric graphs
= Evaluation metrics
= Accuracy: percentage of correctly classified samples of the original dataset

= Attack score: percentage of correctly classified samples of the maliciously
altered segment of the dataset
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SSP Attack

= Adversarial strategy
= Average attack edge density ¢
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Effect of dataset

We evaluated SybilWall on

numerous datasets:

 MNIST

 FashionMNIST
e SVHN

 CIFAR-10

Attack edge density: ¢ = 1
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Results: ¢ =1
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Effect of attack edge
density
We evaluate SybilWall’s defensive

capabilities against various attack
edge densities:

¢ =0.1
¢ = 0.25
¢ =0.5
=1
¢ =15
¢=

Dataset: MNIST
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Results

Effect of data
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Further enhancing SybilWall

= SybilWall does not fully mitigate backdoor attacks for low values of ¢
= We further enhance SybilWall by replacing the weighted average with:
= Weighted median
= Median

= Krum-based filter
Gossiped model histories Own model

e \

Models —

Similarity
Model histories ——>| function

Logit

| > Weighted , Aggregated
function

Normalize
> average model

> Pardoning > Rescale

% R . .
SybilWall's aggregation function
TUDelft g oI



Results

Further enhancing
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Conclusion

= Sybilwall
= Aggregation function
= Probabilistic gossiping mechanism
= Satisfactory performance on 4 datasets
= Stronger Sybil resilience over other defensive algorithms
= Mitigates the label-flipping attack
= Slows down the backdoor attack
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Future work

= Further enhancement of Sybilwall

= Filtering for relevant weights during aggregation

= Improving SybilWall's resilience against backdoor attacks
* e.g. employing gradient history rather than model history

| I
| I

N

Receive Aggregate Train Distribute

————————— Work on client in decentralized learning
Work on client in federated learning
A Received set of models
B Aggregated intermediary model
C Trained model
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