forked from liminn/ICNet-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
231 lines (195 loc) · 10.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import time
import datetime
import yaml
import torch
import torch.nn as nn
import torch.utils.data as data
from dataset import CityscapesDataset
from models import ICNet
from utils import ICNetLoss, IterationPolyLR, SegmentationMetric, SetupLogger
class Trainer(object):
def __init__(self, cfg):
self.cfg = cfg
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.dataparallel = torch.cuda.device_count() > 1
# dataset and dataloader
train_dataset = CityscapesDataset(root = cfg["train"]["cityscapes_root"],
split='train',
base_size=cfg["model"]["base_size"],
crop_size=cfg["model"]["crop_size"])
val_dataset = CityscapesDataset(root = cfg["train"]["cityscapes_root"],
split='val',
base_size=cfg["model"]["base_size"],
crop_size=cfg["model"]["crop_size"])
self.train_dataloader = data.DataLoader(dataset=train_dataset,
batch_size=cfg["train"]["train_batch_size"],
shuffle=True,
num_workers=4,
pin_memory=True,
drop_last=False)
self.val_dataloader = data.DataLoader(dataset=val_dataset,
batch_size=cfg["train"]["valid_batch_size"],
shuffle=False,
num_workers=4,
pin_memory=True,
drop_last=False)
self.iters_per_epoch = len(self.train_dataloader)
self.max_iters = cfg["train"]["epochs"] * self.iters_per_epoch
# create network
self.model = ICNet(nclass = train_dataset.NUM_CLASS, backbone='resnet50').to(self.device)
# create criterion
self.criterion = ICNetLoss(ignore_index=train_dataset.IGNORE_INDEX).to(self.device)
# optimizer, for model just includes pretrained, head and auxlayer
params_list = list()
if hasattr(self.model, 'pretrained'):
params_list.append({'params': self.model.pretrained.parameters(), 'lr': cfg["optimizer"]["init_lr"]})
if hasattr(self.model, 'exclusive'):
for module in self.model.exclusive:
params_list.append({'params': getattr(self.model, module).parameters(), 'lr': cfg["optimizer"]["init_lr"] * 10})
self.optimizer = torch.optim.SGD(params = params_list,
lr = cfg["optimizer"]["init_lr"],
momentum=cfg["optimizer"]["momentum"],
weight_decay=cfg["optimizer"]["weight_decay"])
# self.optimizer = torch.optim.SGD(params = self.model.parameters(),
# lr = cfg["optimizer"]["init_lr"],
# momentum=cfg["optimizer"]["momentum"],
# weight_decay=cfg["optimizer"]["weight_decay"])
# lr scheduler
self.lr_scheduler = IterationPolyLR(self.optimizer,
max_iters=self.max_iters,
power=0.9)
# dataparallel
if(self.dataparallel):
self.model = nn.DataParallel(self.model)
# evaluation metrics
self.metric = SegmentationMetric(train_dataset.NUM_CLASS)
self.current_mIoU = 0.0
self.best_mIoU = 0.0
self.epochs = cfg["train"]["epochs"]
self.current_epoch = 0
self.current_iteration = 0
def train(self):
epochs, max_iters = self.epochs, self.max_iters
log_per_iters = self.cfg["train"]["log_iter"]
val_per_iters = self.cfg["train"]["val_epoch"] * self.iters_per_epoch
start_time = time.time()
logger.info('Start training, Total Epochs: {:d} = Total Iterations {:d}'.format(epochs, max_iters))
self.model.train()
for _ in range(self.epochs):
self.current_epoch += 1
lsit_pixAcc = []
list_mIoU = []
list_loss = []
self.metric.reset()
for i, (images, targets, _) in enumerate(self.train_dataloader):
self.current_iteration += 1
self.lr_scheduler.step()
images = images.to(self.device)
targets = targets.to(self.device)
outputs = self.model(images)
loss = self.criterion(outputs, targets)
self.metric.update(outputs[0], targets)
pixAcc, mIoU = self.metric.get()
lsit_pixAcc.append(pixAcc)
list_mIoU.append(mIoU)
list_loss.append(loss.item())
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
eta_seconds = ((time.time() - start_time) / self.current_iteration) * (max_iters - self.current_iteration)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if self.current_iteration % log_per_iters == 0:
logger.info(
"Epochs: {:d}/{:d} || Iters: {:d}/{:d} || Lr: {:.6f} || Loss: {:.4f} || mIoU: {:.4f} || Cost Time: {} || Estimated Time: {}".format(
self.current_epoch, self.epochs,
self.current_iteration, max_iters,
self.optimizer.param_groups[0]['lr'],
loss.item(),
mIoU,
str(datetime.timedelta(seconds=int(time.time() - start_time))),
eta_string))
average_pixAcc = sum(lsit_pixAcc)/len(lsit_pixAcc)
average_mIoU = sum(list_mIoU)/len(list_mIoU)
average_loss = sum(list_loss)/len(list_loss)
logger.info("Epochs: {:d}/{:d}, Average loss: {:.3f}, Average mIoU: {:.3f}, Average pixAcc: {:.3f}".format(self.current_epoch, self.epochs, average_loss, average_mIoU, average_pixAcc))
if self.current_iteration % val_per_iters == 0:
self.validation()
self.model.train()
total_training_time = time.time() - start_time
total_training_str = str(datetime.timedelta(seconds=total_training_time))
logger.info(
"Total training time: {} ({:.4f}s / it)".format(
total_training_str, total_training_time / max_iters))
def validation(self):
is_best = False
self.metric.reset()
if self.dataparallel:
model = self.model.module
else:
model = self.model
model.eval()
lsit_pixAcc = []
list_mIoU = []
list_loss = []
for i, (image, targets, filename) in enumerate(self.val_dataloader):
image = image.to(self.device)
targets = targets.to(self.device)
with torch.no_grad():
outputs = model(image)
loss = self.criterion(outputs, targets)
self.metric.update(outputs[0], targets)
pixAcc, mIoU = self.metric.get()
lsit_pixAcc.append(pixAcc)
list_mIoU.append(mIoU)
list_loss.append(loss.item())
average_pixAcc = sum(lsit_pixAcc)/len(lsit_pixAcc)
average_mIoU = sum(list_mIoU)/len(list_mIoU)
average_loss = sum(list_loss)/len(list_loss)
self.current_mIoU = average_mIoU
logger.info("Validation: Average loss: {:.3f}, Average mIoU: {:.3f}, Average pixAcc: {:.3f}".format(average_loss, average_mIoU, average_pixAcc))
if self.current_mIoU > self.best_mIoU:
is_best = True
self.best_mIoU = self.current_mIoU
if is_best:
save_checkpoint(self.model, self.cfg, self.current_epoch, is_best, self.current_mIoU, self.dataparallel)
def save_checkpoint(model, cfg, epoch = 0, is_best=False, mIoU = 0.0, dataparallel = False):
"""Save Checkpoint"""
directory = os.path.expanduser(cfg["train"]["ckpt_dir"])
if not os.path.exists(directory):
os.makedirs(directory)
filename = '{}_{}_{}_{:.3f}.pth'.format(cfg["model"]["name"], cfg["model"]["backbone"],epoch,mIoU)
filename = os.path.join(directory, filename)
if dataparallel:
model = model.module
if is_best:
best_filename = '{}_{}_{}_{:.3f}_best_model.pth'.format(cfg["model"]["name"], cfg["model"]["backbone"],epoch,mIoU)
best_filename = os.path.join(directory, best_filename)
torch.save(model.state_dict(), best_filename)
if __name__ == '__main__':
# Set config file
config_path = "./configs/icnet.yaml"
with open(config_path, "r") as yaml_file:
cfg = yaml.load(yaml_file.read())
#print(cfg)
#print(cfg["model"]["backbone"])
#print(cfg["train"]["specific_gpu_num"])
# Use specific GPU
os.environ["CUDA_VISIBLE_DEVICES"] = str(cfg["train"]["specific_gpu_num"])
num_gpus = len(cfg["train"]["specific_gpu_num"].split(','))
print("torch.cuda.is_available(): {}".format(torch.cuda.is_available()))
print("torch.cuda.device_count(): {}".format(torch.cuda.device_count()))
print("torch.cuda.current_device(): {}".format(torch.cuda.current_device()))
# Set logger
logger = SetupLogger(name = "semantic_segmentation",
save_dir = cfg["train"]["ckpt_dir"],
distributed_rank = 0,
filename='{}_{}_log.txt'.format(cfg["model"]["name"], cfg["model"]["backbone"]))
logger.info("Using {} GPUs".format(num_gpus))
logger.info("torch.cuda.is_available(): {}".format(torch.cuda.is_available()))
logger.info("torch.cuda.device_count(): {}".format(torch.cuda.device_count()))
logger.info("torch.cuda.current_device(): {}".format(torch.cuda.current_device()))
logger.info(cfg)
# Start train
trainer = Trainer(cfg)
trainer.train()