-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathmatryoshka_sts.py
137 lines (119 loc) · 5.13 KB
/
matryoshka_sts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
"""
This examples trains BERT (or any other transformer model like RoBERTa, DistilBERT etc.) for the STSbenchmark from scratch.
It uses MatryoshkaLoss with the powerful CoSENTLoss to train models that perform well at output dimensions [768, 512, 256, 128, 64].
It generates sentence embeddings that can be compared using cosine-similarity to measure the similarity.
Usage:
python matryoshka_sts.py
OR
python matryoshka_sts.py pretrained_transformer_model_name
"""
import logging
import sys
import traceback
from datetime import datetime
from datasets import load_dataset
from sentence_transformers import (
SentenceTransformer,
SentenceTransformerTrainer,
SentenceTransformerTrainingArguments,
losses,
)
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator, SequentialEvaluator, SimilarityFunction
# Set the log level to INFO to get more information
logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO)
model_name = sys.argv[1] if len(sys.argv) > 1 else "distilbert-base-uncased"
batch_size = 16
num_train_epochs = 4
matryoshka_dims = [768, 512, 256, 128, 64]
# Save path of the model
output_dir = f"output/matryoshka_sts_{model_name.replace('/', '-')}-{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}"
# 1. Here we define our SentenceTransformer model. If not already a Sentence Transformer model, it will automatically
# create one with "mean" pooling.
model = SentenceTransformer(model_name)
# If we want, we can limit the maximum sequence length for the model
# model.max_seq_length = 75
logging.info(model)
# 2. Load the STSB dataset: https://huggingface.co/datasets/sentence-transformers/stsb
train_dataset = load_dataset("sentence-transformers/stsb", split="train")
eval_dataset = load_dataset("sentence-transformers/stsb", split="validation")
test_dataset = load_dataset("sentence-transformers/stsb", split="test")
logging.info(train_dataset)
# 3. Define our training loss
# CoSENTLoss (https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) needs two text columns and one
# similarity score column (between 0 and 1)
inner_train_loss = losses.CoSENTLoss(model=model)
train_loss = losses.MatryoshkaLoss(model, loss=inner_train_loss, matryoshka_dims=matryoshka_dims)
# 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss.
evaluators = []
for dim in matryoshka_dims:
evaluators.append(
EmbeddingSimilarityEvaluator(
sentences1=eval_dataset["sentence1"],
sentences2=eval_dataset["sentence2"],
scores=eval_dataset["score"],
main_similarity=SimilarityFunction.COSINE,
name=f"sts-dev-{dim}",
truncate_dim=dim,
)
)
dev_evaluator = SequentialEvaluator(evaluators, main_score_function=lambda scores: scores[0])
# 5. Define the training arguments
args = SentenceTransformerTrainingArguments(
# Required parameter:
output_dir=output_dir,
# Optional training parameters:
num_train_epochs=num_train_epochs,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
warmup_ratio=0.1,
fp16=True, # Set to False if you get an error that your GPU can't run on FP16
bf16=False, # Set to True if you have a GPU that supports BF16
# Optional tracking/debugging parameters:
eval_strategy="steps",
eval_steps=100,
save_strategy="steps",
save_steps=100,
save_total_limit=2,
logging_steps=100,
run_name="matryoshka-sts", # Will be used in W&B if `wandb` is installed
)
# 6. Create the trainer & start training
trainer = SentenceTransformerTrainer(
model=model,
args=args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
loss=train_loss,
evaluator=dev_evaluator,
)
trainer.train()
# 7. Evaluate the model performance on the STS Benchmark test dataset
test_dataset = load_dataset("sentence-transformers/stsb", split="test")
evaluators = []
for dim in matryoshka_dims:
evaluators.append(
EmbeddingSimilarityEvaluator(
sentences1=test_dataset["sentence1"],
sentences2=test_dataset["sentence2"],
scores=test_dataset["score"],
main_similarity=SimilarityFunction.COSINE,
name=f"sts-test-{dim}",
truncate_dim=dim,
)
)
test_evaluator = SequentialEvaluator(evaluators)
test_evaluator(model)
# 8. Save the trained & evaluated model locally
final_output_dir = f"{output_dir}/final"
model.save(final_output_dir)
# 9. (Optional) save the model to the Hugging Face Hub!
# It is recommended to run `huggingface-cli login` to log into your Hugging Face account first
model_name = model_name if "/" not in model_name else model_name.split("/")[-1]
try:
model.push_to_hub(f"{model_name}-sts-matryoshka")
except Exception:
logging.error(
f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run "
f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` "
f"and saving it using `model.push_to_hub('{model_name}-sts-matryoshka')`."
)