-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinference_icl.py
218 lines (194 loc) · 7.35 KB
/
inference_icl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os, argparse, pandas as pd
from load_model import load_model
root_dir = os.path.dirname(os.path.abspath(__file__))
from helper import save_json, set_seed, get_result_path
from load_dataset import load_dataset, get_prompt
from environment import TRANSFORMER_CACHE
os.environ['TRANSFORMERS_CACHE'] = TRANSFORMER_CACHE
from configs import task_dataframe, supported_models, prompt_type_options
def infer_model(
call_model,
prompt_type,
text_inputs,
image_inputs,
task_id,
model,
gen_mode,
):
if prompt_type == 'cot':
query = get_prompt(
text_inputs,
image_inputs,
prompt_type,
task_id,
model,
'general',
)
out = call_model(query)
print('-------------------')
print("CoT step:")
print(f"{out['description']}\n")
query = get_prompt(
[],
[],
prompt_type,
task_id,
model,
gen_mode,
history = out['history'],
)
query['instruction'] = [query['instruction'][0], query['instruction'][1] + f"'{text_inputs[-1]}'."]
print(f"Question: {query['instruction'][1]}")
out = call_model(query)
else:
query = get_prompt(
text_inputs,
image_inputs,
prompt_type,
task_id,
model,
gen_mode,
)
out = call_model(query)
return out
def inference(
model,
call_model,
shot,
prompt_type,
task_id,
overwrite,
gen_mode,
finetuned_model = False,
data_mode = 'default', # ['default', 'ft_test']
ft_mode = 'all',
eval_task_theme = '',
):
if finetuned_model and data_mode != 'ft_test':
raise ValueError(f"finetuned models only supports loading ft_test data. You are considering {data_mode} data.")
if (ft_mode == 'leave_one_out' and (not eval_task_theme)) or (ft_mode == 'all' and eval_task_theme):
raise ValueError(f"ft_mode and eval_task_theme are incompatible!")
if (ft_mode == 'leave_one_out'):
if task_dataframe[task_id]['task_name'].split('-')[0].lower() != eval_task_theme:
return None
base_path = get_result_path(
finetuned_model,
data_mode,
model,
gen_mode,
shot,
prompt_type,
ft_mode,
eval_task_theme,
)
folder_path = f"{base_path}/task_{task_id}"
if not os.path.exists(folder_path):
os.makedirs(folder_path)
data_loader = load_dataset(
shot,
prompt_type,
task_id,
data_mode = data_mode,
ft_mode = ft_mode,
)
for count in range(len(data_loader)):
input_dict = data_loader[count]
text_inputs, image_inputs = input_dict["text_inputs"], input_dict["image_inputs"]
save_path = f"{folder_path}/{input_dict['save_path']}"
print(f"===={count}-th sample====")
print(f"theta: {input_dict['theta']}")
for i in range(shot+1):
print(f"{text_inputs[i]}")
# skip if file exists
if gen_mode == 'text':
if not overwrite and os.path.exists(save_path+'.json'):
print('skip')
continue
elif gen_mode == 'image':
if not overwrite and os.path.exists(save_path+'.jpg'):
print('skip')
continue
else:
raise NotImplementedError(f"Unknown gen_mode: {gen_mode}!")
out = infer_model(
call_model,
prompt_type,
text_inputs,
image_inputs,
task_id,
model,
gen_mode,
)
out['text_inputs'] = text_inputs
out['image_inputs'] = image_inputs
if gen_mode == 'text':
save_json(out, save_path+'.json')
elif gen_mode == 'image':
img = out['image']
if img != None: img.save(save_path+'.jpg')
out.pop('image')
save_json(out, save_path+'.json')
print('-------------------')
print(f"{out['description']} \n")
if '__main__' == __name__:
parser = argparse.ArgumentParser(description='Generate images or image descriptions')
parser.add_argument('--shot', type=int, nargs='+', default=[2,4,6,8])
parser.add_argument('--prompt_type', type=str, nargs='+', default=['default'], choices=prompt_type_options)
parser.add_argument('--model', type=str, default="qwen", choices = supported_models)
parser.add_argument('--seed', type=int, default=123)
parser.add_argument('--device', nargs='+', type=str, default=['cuda']) # or ['35GiB', '25GiB', '35GiB']
parser.add_argument('--task_id', type=int, nargs='+', default=list(task_dataframe.keys()))
parser.add_argument('--overwrite', type=int, default=0, choices=[0,1])
parser.add_argument('--gen_mode', type=str, default="image", choices=['text', 'image'])
parser.add_argument('--finetuned_model', type=int, default=0, choices=[0,1], help = "whether to use finetuned model")
parser.add_argument('--data_mode', type=str, default="default", choices=['default', 'ft_test'], help = "what dataset to use")
parser.add_argument('--api_key', type=str, default="yz", help = "which key to use")
parser.add_argument('--ft_mode', type=str, default='all', choices = ['all', 'leave_one_out'], help='finetune mode')
parser.add_argument('--eval_task_theme', type = str, default = '', choices = ['', 'color', 'background', 'style', 'action', 'texture'], help = 'task theme for evaluation')
args = parser.parse_args()
# print experiment configuration
args_dict = vars(args)
print("########"*3)
print('## Experiment Setting:')
print("########"*3)
for key, value in args_dict.items():
print(f"| {key}: {value}")
if len(args.device) == 1:
device = args.device[0]
else:
device = {}
for i in range(len(args.device)):
device[i] = args.device[i]
set_seed(args.seed)
if args.finetuned_model:
if len(args.shot) > 1:
raise ValueError(f"finetuned models only supports loading one shot setting at a time. You are considering {len(args.shot)} different shot setting. shot: {args.shot}.")
if len(args.prompt_type) > 1:
raise ValueError(f"finetuned models only supports loading one prompt type at a time. You are considering {len(args.prompt_type)} different prompt type. prompt_type: {args.prompt_type}.")
call_model = load_model(
args.model,
device,
gen_mode=args.gen_mode,
finetuned = args.finetuned_model,
shot = args.shot[0],
prompt_type = args.prompt_type[0],
api_key = args.api_key,
ft_mode = args.ft_mode,
eval_task_theme = args.eval_task_theme,
)
for shot in args.shot:
for prompt_type in args.prompt_type:
for task_id in args.task_id:
inference(
args.model,
call_model,
shot,
prompt_type,
task_id,
args.overwrite,
args.gen_mode,
args.finetuned_model,
args.data_mode,
args.ft_mode,
args.eval_task_theme,
)