-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmask_diffusion.py
455 lines (367 loc) · 18.4 KB
/
mask_diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import math
import torch
import torch.nn.functional as F
import numpy as np
from torch import nn
from einops import reduce
from tqdm.auto import tqdm
from functools import partial
from Models.interpretable_diffusion.maskblock import DiffWave
from Models.interpretable_diffusion.model_utils import default, identity, extract
from math import sqrt
# gaussian diffusion trainer class
def linear_beta_schedule(timesteps):
scale = 1000 / timesteps
beta_start = scale * 0.0001
beta_end = scale * 0.02
return torch.linspace(beta_start, beta_end, timesteps, dtype=torch.float64)
def cosine_beta_schedule(timesteps, s=0.008):
"""
cosine schedule
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
"""
steps = timesteps + 1
x = torch.linspace(0, timesteps, steps, dtype=torch.float64)
alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * math.pi * 0.5) ** 2
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
return torch.clip(betas, 0, 0.999)
class Diffusion_TS(nn.Module):
def __init__(
self,
seq_length,
feature_size,
n_layer_enc=3,
n_layer_dec=6,
d_model=None,
timesteps=1000,
sampling_timesteps=None,
loss_type='l1',
beta_schedule='cosine',
n_heads=4,
mlp_hidden_times=4,
eta=0.,
attn_pd=0.,
resid_pd=0.,
kernel_size=None,
padding_size=None,
use_ff=True,
reg_weight=None,
mels=1,
res_chanel=10,
dila=2,
dilation_cycle_length=10,
res_layer=20,
**kwargs
):
super(Diffusion_TS, self).__init__()
self.eta, self.use_ff = eta, use_ff
self.seq_length = seq_length
self.feature_size = feature_size
self.ff_weight = default(reg_weight, math.sqrt(self.seq_length) / 5)
# self.model = DiffWave(n_feat=feature_size, n_channel=seq_length, n_layer_enc=n_layer_enc, n_layer_dec=n_layer_dec,
# n_heads=n_heads, attn_pdrop=attn_pd, resid_pdrop=resid_pd, mlp_hidden_times=mlp_hidden_times,
# max_len=seq_length, n_embd=d_model, conv_params=[kernel_size, padding_size], **kwargs)
# self.mels=1;
# self.res_chanel=10;
self.model=DiffWave(residual_channels=feature_size, n_mels=mels,residual_layers=res_layer, dcl=dilation_cycle_length, unconditional=False)
if beta_schedule == 'linear':
betas = linear_beta_schedule(timesteps)
elif beta_schedule == 'cosine':
betas = cosine_beta_schedule(timesteps)
else:
raise ValueError(f'unknown beta schedule {beta_schedule}')
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, dim=0)
alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value=1.)
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
self.loss_type = loss_type
# sampling related parameters
self.sampling_timesteps = default(
sampling_timesteps, timesteps) # default num sampling timesteps to number of timesteps at training
assert self.sampling_timesteps <= timesteps
self.fast_sampling = self.sampling_timesteps < timesteps
# helper function to register buffer from float64 to float32
register_buffer = lambda name, val: self.register_buffer(name, val.to(torch.float32))
register_buffer('betas', betas)
register_buffer('alphas_cumprod', alphas_cumprod)
register_buffer('alphas_cumprod_prev', alphas_cumprod_prev)
# calculations for diffusion q(x_t | x_{t-1}) and others
register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod))
register_buffer('log_one_minus_alphas_cumprod', torch.log(1. - alphas_cumprod))
register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod))
register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1))
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
register_buffer('posterior_variance', posterior_variance)
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
register_buffer('posterior_log_variance_clipped', torch.log(posterior_variance.clamp(min=1e-20)))
register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod))
# calculate reweighting
register_buffer('loss_weight', torch.sqrt(alphas) * torch.sqrt(1. - alphas_cumprod) / betas / 100)
def predict_noise_from_start(self, x_t, t, x0):
return (
(extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - x0) /
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
)
def predict_start_from_noise(self, x_t, t, noise):
return (
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
)
def q_posterior(self, x_start, x_t, t):
posterior_mean = (
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = extract(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def output(self, x, t, cond_info, padding_masks=None):
model_output = self.model(x, t, cond_info, spectrogram=padding_masks)
return model_output
def model_predictions(self, x, t, clip_x_start=False, padding_masks=None):
if padding_masks is None:
padding_masks = torch.ones(x.shape[0], self.seq_length, dtype=bool, device=x.device)
maybe_clip = partial(torch.clamp, min=-1., max=1.) if clip_x_start else identity
x_start = self.output(x, t, cond_info=None, padding_masks=None)
x_start = maybe_clip(x_start)
pred_noise = self.predict_noise_from_start(x, t, x_start)
return pred_noise, x_start
def p_mean_variance(self, x, t, clip_denoised=True):
_, x_start = self.model_predictions(x, t)
if clip_denoised:
x_start.clamp_(-1., 1.)
model_mean, posterior_variance, posterior_log_variance = \
self.q_posterior(x_start=x_start, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance, x_start
def p_sample(self, x, t: int, clip_denoised=True):
batched_times = torch.full((x.shape[0],), t, device=x.device, dtype=torch.long)
model_mean, _, model_log_variance, x_start = \
self.p_mean_variance(x=x, t=batched_times, clip_denoised=clip_denoised)
noise = torch.randn_like(x) if t > 0 else 0. # no noise if t == 0
pred_img = model_mean + (0.5 * model_log_variance).exp() * noise
return pred_img, x_start
@torch.no_grad()
def sample(self, shape):
device = self.betas.device
img = torch.randn(shape, device=device)
for t in tqdm(reversed(range(0, self.num_timesteps)),
desc='sampling loop time step', total=self.num_timesteps):
img, _ = self.p_sample(img, t)
return img
@torch.no_grad()
def fast_sample(self, shape, clip_denoised=True):
batch, device, total_timesteps, sampling_timesteps, eta = \
shape[0], self.betas.device, self.num_timesteps, self.sampling_timesteps, self.eta
# [-1, 0, 1, 2, ..., T-1] when sampling_timesteps == total_timesteps
times = torch.linspace(-1, total_timesteps - 1, steps=sampling_timesteps + 1)
times = list(reversed(times.int().tolist()))
time_pairs = list(zip(times[:-1], times[1:])) # [(T-1, T-2), (T-2, T-3), ..., (1, 0), (0, -1)]
img = torch.randn(shape, device=device)
for time, time_next in tqdm(time_pairs, desc='sampling loop time step'):
time_cond = torch.full((batch,), time, device=device, dtype=torch.long)
pred_noise, x_start, *_ = self.model_predictions(img, time_cond, clip_x_start=clip_denoised)
if time_next < 0:
img = x_start
continue
alpha = self.alphas_cumprod[time]
alpha_next = self.alphas_cumprod[time_next]
sigma = eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
c = (1 - alpha_next - sigma ** 2).sqrt()
noise = torch.randn_like(img)
img = x_start * alpha_next.sqrt() + \
c * pred_noise + \
sigma * noise
return img
def generate_mts(self, batch_size=16):
feature_size, seq_length = self.feature_size, self.seq_length
sample_fn = self.fast_sample if self.fast_sampling else self.sample
return sample_fn((batch_size, seq_length, feature_size))
@property
def loss_fn(self):
if self.loss_type == 'l1':
return F.l1_loss
elif self.loss_type == 'l2':
return F.mse_loss
else:
raise ValueError(f'invalid loss type {self.loss_type}')
def q_sample(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
return (
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)
def generate_infinity_tensor(self, x, p):
# 生成一个与x相同形状的二元张量,其中元素的值为1的概率为p
mask = torch.bernoulli(torch.full(x.shape, p))
# 将x的元素置为无穷小
x[mask == 1] = 0
return x
def get_randmask(self, x):
mask = torch.ones_like(x)
mask[:, ::2, :] = 0
reverse_mask=1-mask
masked_input = x * mask
reverse_mask = x * reverse_mask
return masked_input, reverse_mask
def _train_loss(self, x_start, t, target=None, noise=None, padding_masks=None):
noise = default(noise, lambda: torch.randn_like(x_start))
if target is None:
target = x_start
x = self.q_sample(x_start=x_start, t=t, noise=noise) # noise sample
# x = self.generate_infinity_tensor(x,0.1)
# noise_t=x-x_start
mask_noise, reverse_mask_noise=self.get_randmask(noise)
x,reverse_x=self.get_randmask(x)
# mask_model_out=self.output(x,t,reverse_mask_noise,padding_masks)
# reverse_model_out=self.output(reverse_x,t,mask_noise,padding_masks)
mask_model_out=self.output(reverse_x,t,reverse_mask_noise,padding_masks)
reverse_model_out=self.output(x,t,mask_noise,padding_masks)
# model_out = self.output(x, t, padding_masks)
mask_target,mask_target=self.get_randmask(target)
model_out= (mask_model_out+reverse_model_out)/sqrt(2.0)
# train_loss1 = self.loss_fn(mask_model_out, mask_target, reduction='none')
# train_loss2 = self.loss_fn(reverse_model_out, mask_target, reduction='none')
train_loss=self.loss_fn(model_out, mask_target, reduction='none')
fourier_loss = torch.tensor([0.])
if self.use_ff:
fft1 = torch.fft.fft(model_out.transpose(1, 2), norm='forward')
fft2 = torch.fft.fft(target.transpose(1, 2), norm='forward')
fft1, fft2 = fft1.transpose(1, 2), fft2.transpose(1, 2)
fourier_loss = self.loss_fn(torch.real(fft1), torch.real(fft2), reduction='none')\
+ self.loss_fn(torch.imag(fft1), torch.imag(fft2), reduction='none')
train_loss += self.ff_weight * fourier_loss
train_loss = reduce(train_loss, 'b ... -> b (...)', 'mean')
train_loss = train_loss * extract(self.loss_weight, t, train_loss.shape)
return train_loss.mean()
def forward(self, x, **kwargs):
b, c, n, device, feature_size, = *x.shape, x.device, self.feature_size
assert n == feature_size, f'number of variable must be {feature_size}'
t = torch.randint(0, self.num_timesteps, (b,), device=device).long()
return self._train_loss(x_start=x, t=t, **kwargs)
def return_components(self, x, t: int):
b, c, n, device, feature_size, = *x.shape, x.device, self.feature_size
assert n == feature_size, f'number of variable must be {feature_size}'
t = torch.tensor([t])
t = t.repeat(b).to(device)
x = self.q_sample(x, t)
trend, season = self.model(x, t)
return trend, season
def fast_sample_infill(self, shape, target, sampling_timesteps, partial_mask=None, clip_denoised=True, model_kwargs=None):
batch, device, total_timesteps, eta = shape[0], self.betas.device, self.num_timesteps, self.eta
# [-1, 0, 1, 2, ..., T-1] when sampling_timesteps == total_timesteps
times = torch.linspace(-1, total_timesteps - 1, steps=sampling_timesteps + 1)
times = list(reversed(times.int().tolist()))
time_pairs = list(zip(times[:-1], times[1:])) # [(T-1, T-2), (T-2, T-3), ..., (1, 0), (0, -1)]
img = torch.randn(shape, device=device)
for time, time_next in tqdm(time_pairs, desc='conditional sampling loop time step'):
time_cond = torch.full((batch,), time, device=device, dtype=torch.long)
pred_noise, x_start, *_ = self.model_predictions(img, time_cond, clip_x_start=clip_denoised)
if time_next < 0:
img = x_start
continue
alpha = self.alphas_cumprod[time]
alpha_next = self.alphas_cumprod[time_next]
sigma = eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt()
c = (1 - alpha_next - sigma ** 2).sqrt()
pred_mean = x_start * alpha_next.sqrt() + c * pred_noise
noise = torch.randn_like(img)
img = pred_mean + sigma * noise
img = self.langevin_fn(sample=img, mean=pred_mean, sigma=sigma, t=time_cond,
tgt_embs=target, partial_mask=partial_mask, **model_kwargs)
target_t = self.q_sample(target, t=time_cond)
img[partial_mask] = target_t[partial_mask]
img[partial_mask] = target[partial_mask]
return img
def sample_infill(
self,
shape,
target,
partial_mask=None,
clip_denoised=True,
model_kwargs=None,
):
"""
Generate samples from the model and yield intermediate samples from
each timestep of diffusion.
"""
batch, device = shape[0], self.betas.device
img = torch.randn(shape, device=device)
for t in tqdm(reversed(range(0, self.num_timesteps)),
desc='conditional sampling loop time step', total=self.num_timesteps):
img = self.p_sample_infill(x=img, t=t, clip_denoised=clip_denoised, target=target,
partial_mask=partial_mask, model_kwargs=model_kwargs)
img[partial_mask] = target[partial_mask]
return img
def p_sample_infill(
self,
x,
target,
t: int,
partial_mask=None,
x_self_cond=None,
clip_denoised=True,
model_kwargs=None
):
b, *_, device = *x.shape, self.betas.device
batched_times = torch.full((x.shape[0],), t, device=x.device, dtype=torch.long)
model_mean, _, model_log_variance, _ = \
self.p_mean_variance(x=x, t=batched_times, x_self_cond=x_self_cond, clip_denoised=clip_denoised)
noise = torch.randn_like(x) if t > 0 else 0. # no noise if t == 0
sigma = (0.5 * model_log_variance).exp()
pred_img = model_mean + sigma * noise
pred_img = self.langevin_fn(sample=pred_img, mean=model_mean, sigma=sigma, t=batched_times,
tgt_embs=target, partial_mask=partial_mask, **model_kwargs)
target_t = self.q_sample(target, t=batched_times)
pred_img[partial_mask] = target_t[partial_mask]
return pred_img
def langevin_fn(
self,
coef,
partial_mask,
tgt_embs,
learning_rate,
sample,
mean,
sigma,
t,
coef_=0.
):
if t[0].item() < self.num_timesteps * 0.05:
K = 0
elif t[0].item() > self.num_timesteps * 0.9:
K = 3
elif t[0].item() > self.num_timesteps * 0.75:
K = 2
learning_rate = learning_rate * 0.5
else:
K = 1
learning_rate = learning_rate * 0.25
input_embs_param = torch.nn.Parameter(sample)
with torch.enable_grad():
for i in range(K):
optimizer = torch.optim.Adagrad([input_embs_param], lr=learning_rate)
optimizer.zero_grad()
x_start = self.output(x=input_embs_param, t=t,cond_info=None)
if sigma.mean() == 0:
logp_term = coef * ((mean - input_embs_param) ** 2 / 1.).mean(dim=0).sum()
infill_loss = (x_start[partial_mask] - tgt_embs[partial_mask]) ** 2
infill_loss = infill_loss.mean(dim=0).sum()
else:
logp_term = coef * ((mean - input_embs_param)**2 / sigma).mean(dim=0).sum()
infill_loss = (x_start[partial_mask] - tgt_embs[partial_mask]) ** 2
infill_loss = (infill_loss/sigma.mean()).mean(dim=0).sum()
loss = logp_term + infill_loss
loss.backward()
optimizer.step()
epsilon = torch.randn_like(input_embs_param.data)
input_embs_param = torch.nn.Parameter((input_embs_param.data + coef_ * sigma.mean().item() * epsilon).detach())
sample[~partial_mask] = input_embs_param.data[~partial_mask]
return sample
if __name__ == '__main__':
pass