-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaskblock.py
252 lines (200 loc) · 8.4 KB
/
maskblock.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from math import sqrt
Linear = nn.Linear
ConvTranspose2d = nn.ConvTranspose2d
def Conv1d(*args, **kwargs):
layer = nn.Conv1d(*args, **kwargs)
nn.init.kaiming_normal_(layer.weight)
return layer
@torch.jit.script
def silu(x):
return x * torch.sigmoid(x)
class DiffusionEmbedding(nn.Module):
def __init__(self, max_steps):
super().__init__()
self.register_buffer('embedding', self._build_embedding(max_steps), persistent=False)
self.projection1 = Linear(128, 512)
self.projection2 = Linear(512, 512)
def forward(self, diffusion_step):
if diffusion_step.dtype in [torch.int32, torch.int64]:
x = self.embedding[diffusion_step]
else:
x = self._lerp_embedding(diffusion_step)
x = self.projection1(x)
x = silu(x)
x = self.projection2(x)
x = silu(x)
return x
def _lerp_embedding(self, t):
low_idx = torch.floor(t).long()
high_idx = torch.ceil(t).long()
low = self.embedding[low_idx]
high = self.embedding[high_idx]
return low + (high - low) * (t - low_idx)
def _build_embedding(self, max_steps):
steps = torch.arange(max_steps).unsqueeze(1) # [T,1]
dims = torch.arange(64).unsqueeze(0) # [1,64]
table = steps * 10.0**(dims * 4.0 / 63.0) # [T,64]
table = torch.cat([torch.sin(table), torch.cos(table)], dim=1)
return table
class SpectrogramUpsampler(nn.Module):
def __init__(self, n_mels):
super().__init__()
self.conv1 = ConvTranspose2d(1, 1, [3, 32], stride=[1, 16], padding=[1, 8])
self.conv2 = ConvTranspose2d(1, 1, [3, 32], stride=[1, 16], padding=[1, 8])
def forward(self, x):
x = torch.unsqueeze(x, 1)
x = self.conv1(x)
x = F.leaky_relu(x, 0.4)
x = self.conv2(x)
x = F.leaky_relu(x, 0.4)
x = torch.squeeze(x, 1)
return x
class ResidualBlock(nn.Module):
def __init__(self, n_mels, residual_channels, dilation, uncond=True):
'''
:param n_mels: inplanes of conv1x1 for spectrogram conditional
:param residual_channels: audio conv
:param dilation: audio conv dilation
:param uncond: disable spectrogram conditional
'''
super().__init__()
# self.pos_encoder = PositionalEncoding(2*residual_channels, 24)
self.dilated_conv = Conv1d(residual_channels, 2 * residual_channels, 3, padding=dilation, dilation=dilation)
self.diffusion_projection = Linear(512, residual_channels)
self.con_projection = Conv1d(int(residual_channels), 2*residual_channels, 3, padding=dilation, dilation=dilation)
if not uncond: # conditional model
self.conditioner_projection = Conv1d(n_mels, 2 * residual_channels, 1)
else: # unconditional model
self.conditioner_projection = None
self.output_projection = Conv1d(residual_channels, 2 * residual_channels, 1)
def forward(self, x, diffusion_step,cond_info, conditioner=None):
# assert (conditioner is None and self.conditioner_projection is None) or \
# (conditioner is not None and self.conditioner_projection is not None)
diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1)
y = x + diffusion_step
# y=self.pos_encoder(y)
if self.conditioner_projection is None: # using a unconditional model
y = self.dilated_conv(y)
else:
# conditioner = self.conditioner_projection(conditioner)
# y = self.dilated_conv(y) + conditioner
y = self.dilated_conv(y)
if cond_info is not None:
# cond_info=cond_info.permute(0, 2, 1)
cond_info=self.con_projection(cond_info)
y=y+cond_info
else:
y=y
gate, filter = torch.chunk(y, 2, dim=1)
y = torch.sigmoid(gate) * torch.tanh(filter)
y = self.output_projection(y)
residual, skip = torch.chunk(y, 2, dim=1)
return (x + residual) / sqrt(2.0), skip
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=1000):
super(PositionalEncoding, self).__init__()
self.encoding = torch.zeros(max_len, d_model).cuda()
position = torch.arange(0, max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model))
self.encoding[:, 0::2] = torch.sin(position * div_term)
self.encoding[:, 1::2] = torch.cos(position * div_term)
self.encoding = self.encoding.unsqueeze(0)
def forward(self, x):
return x + self.encoding[:, :x.size(1)]
# Assuming your input tensor is input_tensor of shape [batch_size, seq_len, feature_dim]
# d_model = 6
# max_len = 24
# pos_encoder = PositionalEncoding(d_model, max_len)
# input_tensor = torch.randn(1, 24, 6) # Example input tensor
# output_tensor = pos_encoder(input_tensor)
class DiffWave(nn.Module):
def __init__(self,
residual_channels,
n_mels=1,
dcl=10,
residual_layers=20,
noise_schedule=np.linspace(1e-4, 0.05, 500).tolist(),
unconditional=False):
super().__init__()
self.input_projection = Conv1d(residual_channels, 2*residual_channels, 1)
self.con_projection = Conv1d(residual_channels, 2*residual_channels, 1)
self.pos_encoder = PositionalEncoding(residual_channels, 24)
self.diffusion_embedding = DiffusionEmbedding(len(noise_schedule))
if unconditional: # use unconditional model
self.spectrogram_upsampler = None
else:
self.spectrogram_upsampler = SpectrogramUpsampler(n_mels)
self.residual_layers = nn.ModuleList([
# ResidualBlock(n_mels, residual_channels, 2**(i % dcl), uncond=unconditional)
ResidualBlock(n_mels, 2*residual_channels, 2**(i % 5), uncond=unconditional)
for i in range(residual_layers)
])
self.reverse_residual_layers = nn.ModuleList([
# ResidualBlock(n_mels, residual_channels, 2**(i % dcl), uncond=unconditional)
ResidualBlock(n_mels, 2*residual_channels, 2**(i % 5), uncond=unconditional)
for i in range(residual_layers)
])
self.skip_projection = Conv1d(2*residual_channels, 2*residual_channels, 1)
self.output_projection = Conv1d(2*residual_channels, residual_channels, 1)
nn.init.zeros_(self.output_projection.weight)
def get_randmask(self, x):
mask = torch.ones_like(x)
mask[:, ::2, :] = 0
reverse_mask=1-mask
# masked_input = x * mask
# reverse_mask = x * reverse_mask
masked_input = mask
reverse_mask =reverse_mask
return masked_input, reverse_mask
def generate_mask_like(self,x):
mask_ratio=0.5
mask = torch.rand_like(x) < mask_ratio
return mask.float()
def forward(self, audio, diffusion_step,train,spectrogram=None):
# assert (spectrogram is None and self.spectrogram_upsampler is None) or \
# (spectrogram is not None and self.spectrogram_upsampler is not None)
audio=self.pos_encoder(audio)
x = audio.permute(0, 2, 1)
x = self.input_projection(x)
x = F.relu(x)# mask,reverse_mask=self.get_randmask(x)
diffusion_step = self.diffusion_embedding(diffusion_step)
mask_full = torch.ones_like(x)
mask_none = torch.zeros_like(x)
mask = self.generate_mask_like(x)
mask_input=x
if train:
skip = None
for layer in self.residual_layers:
mask_x, skip_connection = layer(mask_input, diffusion_step,None, None)
skip = skip_connection if skip is None else skip_connection + skip
mask_x = skip / sqrt(len(self.residual_layers))
res=mask_x*mask+x*(1-mask)
mskip = None
for layer in self.residual_layers:
reverse_x, mskip_connection = layer(res, diffusion_step,None, None)
mskip = skip_connection if mskip is None else mskip_connection + mskip
x = mskip / sqrt(len(self.residual_layers))
# x=(x+reverse_x)/sqrt(2.0)
# x = skip / sqrt(len(self.residual_layers))
else:
# diffusion_step = self.diffusion_embedding(diffusion_step)
# if self.spectrogram_upsampler: # use conditional model
# spectrogram = self.spectrogram_upsampler(spectrogram)
# x_start=x
skip = None
for layer in self.residual_layers:
x, skip_connection = layer(x, diffusion_step,None, None)
skip = skip_connection if skip is None else skip_connection + skip
x = skip / sqrt(len(self.residual_layers))
# x,_=self.get_randmask(x)
# _,reverse_x=self.get_randmask(reverse_x)
# x=(x+reverse_x)
x = self.skip_projection(x)
x = F.relu(x)
x = self.output_projection(x).permute(0,2,1)
return x