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Lagrange interpolation estimates a function at a reference position x from known values
of the function at distinct non-uniformly spaced points z;, ..., z,,. Here, the corresponding
n-point finite-difference formulae are derived to estimate derivatives up to order n—1 at
X- A recurrence relation is derived that permits the errors to be determined as a Taylor
series to any accuracy. The error coefficient multiplying the n+jth derivative is a
polynomial of order j+1 in the elementary symmetric functions for the displacements
T —X, ..., T,—X. Appendices state finite-difference formulae to estimate the derivatives
and the first four error terms for n=1,...,5.
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1. Introduction

Computational engineering often requires the numerical solution of differential
equations. A natural and direct way to construct finite-difference computational
models is to replace the differential operators d/dz¢ at some reference point z=yx
with discrete counterparts Dy, corresponding to derivatives of polynomial
Lagrange interpolation from the function values at n>d distinct grid points
x1,...,Z,. If the grid points are regularly spaced, then the y-dependence of the
finite-difference operators Dy is explicitly known and tabulated (Abramowitz &
Stegun 1965: eqn. 25.2.7 and eqns. 25.3.4 to 25.3.6, tables 25.1, 25.2).
In applications the grid spacing might not be uniform (e.g. grid points to
include sites where values are available or are sought). For non-uniform grids,
Fornberg (1988, 1998) and Corless & Rokicki (1996) give neat computer
algorithms that construct D, for 0<d<n. In §3 of the present paper, an explicit
formula for Dy is derived in terms of elementary symmetric functions. Appendix
A evaluates D, in terms of the displacements «;=1x;—x for the cases 0<d<mn,
n=1,...,5.

In a term-by-term finite-difference model of a differential equation, the size of
the errors is related to the worst of the errors that arise in replacing 9¢ / dz¢ by
D,. For a computational scheme constructed in terms of Dy, it may be possible to
make slight adjustments to the coefficients multiplying each of the D, so that
there is extra cancellation of the errors. Crandall (1955) performed such error
cancellation with n=3 and a uniform grid for the diffusion equation at two levels
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in time. Mitchell & Griffiths (1980, ch. 2, table 1) demonstrate the leap in
accuracy over the Crank-Nicolson scheme (1947). Smith (2000) extended the
Crandall (1955) scheme to include grid non-uniformity via neat Taylor series for
the n=3 errors in Dy, D; and D,. The motivation for the present paper is to
derive error Taylor series for all n. Appendix B states the first four error terms
for 0<d<n, n=1,...,5. Computer algebra packages (e.g. MAPLE or MATHEMA-
TicA) make it straightforward to confirm the validity for n=1,...,5 of the neat
error expressions.

Section 2 introduces elementary symmetric functions and states the main
results, from which operators and errors can be constructed for any number of
grid points. The subsequent four sections detail a direct derivation of the main
results, involving generalized Vandermonde determinants and Schur functions
(De Marchi 2001). Functions introduced by Shur in his 1901 thesis on groups of
matrices are today called S or Schur functions (MacDonald 1995).

2. Elementary symmetric functions and main results

In this paper, a denotes the ordered set of displacements a;= z;—x. For the set «,
the elementary symmetric functions e are defined as the sum of all distinct
permutations of order i over the set. An equivalent algebraic definition (Baker
1994; MacDonald 1995) is that for arbitrary z,

i ety = ﬁ(l + a;2). (2.1)
i=0 i=1

For indices i<0 or i>mn, it is implicit that e =0. The zero-order elementary
symmetric function is ej = 1. To minimize confusion with powers, the superscript
indicating the set will usually be omitted. For example, with n=3,

e =a) taytag, e =oa0y+ajagt+ o, €3 = ajayos. (2.2)
The derivatives with respect to varied reference points are
da; _ ) de;
dx T 0y

If the chosen reference point y is the centroid, then there is the simplification

. d .
=—(n+1 _J)ej—h a{eﬂayzo} =—(n _J)€j71|a,:0~ (2.3)

n

elzzn:aiZin—nXZO. (2.4)
=1

=1

With e; =0, equations (B 6a-c) correspond to Smith’s (2000) eqns (3.3a) to
(3.3¢). If the reference point y coincides with any of the grid points, the
simplification is

e, = [z —x =0. (2.5)
On a uniformly spaced grid with x chosen to be the centroid, e;=0 for all odd 1.
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In §3, the n-point finite-difference operator D, operating on a function f(z), is
shown to be the weighted sum of the function values at the grid points
n

Dylf] = di(—1)""*"" Cnmd =0 (g, 2.6

alf] = d\(=1) 2 Thaymren(es — ) f(x:) (2.6)

Extensive numerical tests confirm the agreement of this explicit equation (2.6)

with results from the computational algorithms of Fornberg (1988, 1998) and

Corless & Rokicki (1996). Dy[f] is an n-point Lagrange interpolation

(Abramowitz & Stegun 1965: eqn 25.2.2) and Dy[f] is the dth derivative, with

respect to x of the Lagrange interpolation (Fornberg 1988). A mathematical way

of expressing the equivalence of the subscript d to the number of y-derivatives is
the consistency relationship

ad
D =—D,[f]. 2.7
nlf) =5 il 2.7
In appendix A, the sign changes and the increasing factorial numerators between
successive Dy, ..., D,—; can be explained from equations (2.3) and (2.7).

If the function f(z) is not a polynomial in z of degree, n—1, then an error will
arise at degree n or beyond. For uniform spacing, series for differences in terms of
derivatives are well known (Abramowitz & Stegun 1965: eqns 25.3.16-25.3.20).
In §4 it is shown that the error terms from the weighted sum of a Taylor series
about the reference point x can be written as a series involving Schur functions in

the displacements,
) . (2.8)
a=x

adf n—d—1 - S/I("d n) ajf
D, [f] — —% = dI(—=1)" E —Luen) ZJ
alf] 927 [,—, (—1) - j1 9

j=n
After some technical preliminaries in §5, it is shown in §6 that the higher-order
Schur functions can be calculated through the recurrence relation for j>n:

n

Sagiam = D_(~D" Sk (2.9)
=

Exact arithmetic avoids instability for large j. An interpretation of the left-hand
side term in equation (2.8) gives the low-order error coefficients for 0 <j<n:

()" =,
SaGdn) = . (2.10)
0, j#d.

From these degree zero starting values in equation (2.10), at the ¢th application
the recurrence relation in equation (2.9) generates the j=n+¢—1 term, that has
homogeneous degree n+/¢—1—d in the displacements and is polynomial of order
£in e, ..., e, In particular, the leading four error terms presented in appendix B
are respectively linear, quadratic, cubic and quartic in ey, ..., e,.

For the errors, a consequence of the consistency relationship in equation (2.7)

and
9 adf
o E{Dd[ﬂ - FX}- (2.11)

Azt
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In appendix B, the sign changes and decreasing factorial denominators for the
lowest-order error terms f(x) in D, can be linked to equations (2.3) and (2.11).

3. Derivation of difference operators

Let the operator D,[f] be the weighted sum of discrete values of a function f(z)
over n distinct points so that

n

Dylf] = Z wf (7). (3.1)

=1

Taking the Taylor series of f(z;) about the position x and writing a;=z;—x,

Dy[f] = Z (wz (% % N )) (3.2)

i=1 =0
To avoid convergence considerations, the circle of convergence about y is
assumed to include all the z;. Let Dy,,[f] represent the truncated form of D,|[f]
with the jsummation terminated at degree m—1. For finite-term truncations,
the order of ¢ and j summations can be exchanged:
>. (3.3)
r=x

m—1 n J j
a\ Of
ouin -5 ($:0) 2
= \\= )
There are n weights w; to be selected. The truncated operator D, ,[f] can be
forced to represent the dth derivative operator for d<n:
_ 9
dx?

Dyulf] (3.4)

=X

With the standard notation for the Kronecker delta

L, =y

0, i#jy,

then the unit column vector (8y4, 614, -- -, 6(n_1)d)T represents the derivative to be
approximated. The system to be solved can thus be written in matrix form as

1 1 o 1
0
o D) n wy 0d
0
o aj @ 2 .
2 2 wy | = | 0Ogq . (3.6)
n—1 n—1 n—1
ol e A Wn 6(’n—1)d
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Cramer’s rule states that any system Aw= b with non-zero det(A) has a general

solution for each component w, of w=(wy, ..., w,),
A b
—det () 0
by
wU = y (3-7)
' det(A)
where the unit row vector p(y) = (61, 02y, ..., 0,,) picks out the component w, of

the solution.
In this form, the system of equations (3.6), upon factoring out and cancelling
factorials, has a solution for each component

1 1 o 1 004

241 (25 o, 51(1

o o ool 2094

—det
A ap™t (n=1)!6(—1)a
01y 09y Oy 0
w, = (3.8)
1 1 o 1
o 0y a,
det| af o3 o

oz{"_l 013_1 aﬁ_l

The denominator in equation (3.8) is a Vandermonde determinant (De Marchi
2001), hereafter denoted by VDM(«), in terms of the ordered set o= (e, ..., a,).
It has value

VDM(a) = ] (e —ay). (3.9)

1<j<k<n

The matrix in the numerator has zero last column except for the value d! at the
position (d+1, n+1) and it has zero last row except for 1 at the position (n+1, ).
As temporary notation within this section, let

6(1/) = (a17~'~aan)\(ay)7 (3100’)
a length n—1 ordered set of displacements that excludes «,, and let
v =1(0,...,n—1)\(d), (3.100)

a length n—1 ordered set of integers excluding d at position d+1 that arise as
powers of the displacements. By expansion down the last column then the last row,
the numerator in (3.8) can be written

d(—1)"""det(B(y))), 1<s, t<n—1. (3.11)
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The denominator can be evaluated in a way that involves VDM(8(y))

VDM(e) = [ (@ —a) [] (¢, =) [ (@ — e

1<j#y<k#y<n 1<5<y y<k<n
= VDM(ﬁ(y)) H (ay - aj) H (aj - ay)
1<j<y y<j<n
= (—1)"'VDM(B(y)) ][] (o, —a. (3.12)
1<j#y<n

This is non-zero because the grid points z;, and therefore the displacements «;, are
distinct. Then, the quotient (3.8) takes the form

_ d(=D)"""5(6(y)

H1<ﬂ&y<n(a oy ) ’

(3.13)

where S3(6) is a Schur function over §(y) with partition A (Baker 1994; MacDonald
1995):

det(8(y){")

$6W) = o8y

(3.14)

Partitions can be calculated by taking the difference in the powers of the
numerator and the denominator in equation (3.14), in reverse order (Baker 1994;
MacDonald 1995). The powers in the numerator are y= (0, ..., n— 1)\ (d) and those
in the denominator are (0, ..., n—2), so that the partition 2 is given by

A=(n—1,...,00\(d) — (n—2,...,0) = (1", (3.15)

For convenience, the notation a’ represents b occurrences of a, for example,
(1YY=(1, 1, 1, 1). Trailing zeros in partitions are dropped as they are equivalent to
multiplication of the Schur function by ey=1. The conjugate of 4 is obtained by
transposing the diagram of A to give A’ = (n— d—1) (Baker 1994; MacDonald 1995).

The Jacobi-Trudi identity for elementary symmetric functions states
(MacDonald 1995) that for an arbitrary partition A of length ¢

Sy =det(ey_spy), 1<s, t<L. (3.16)

In this particular case with A’=(n—d—1), the Schur function has the simple
form

S,(8) = £V, (3.17)
This gives the explicit form of equation (3.13) as

d—1 _B(y)
L |
H1<7¢y<n( 7)

(3.18)
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The weighted summation in equation (3.1) over all n of the points gives
the difference operator that approximates the dth derivative

n B(17)

€
D,lf] = d!(—=1)"""! n—d_1 f(z). 3.19
ilf = =1 Hlsjqeﬁn(az‘ - 0‘,7‘) (=) ( )
Also,
n ) n—1
Z eg(l)zk = Z ef( ) b 4 e,Lm "= H (1 +B(i)2) = H (1 + ay.2)
k=0 k=0 1<k<n—1 1<k+#i<n

= (Z 6gzk> |aZ:O = Z 6;§|a7:Ozk (320)

k=0 k=0

where the definition in equation (2.1) of elementary symmetric functions and the
result eg(l) = 0 has been used, that is, 8(7) is only of length n—1. Equating powers
of z gives:

S0 = e, . (3.21)

The temporary notation 8 can be replaced in equation (3.19) to give the result:

n 6%_(1_1‘(11:0 f(z). (3.22)

. __1\n—d—1
Dy[f] = d\(-1) — [Li<jrizn(a; — o))

The displacement differences o;— a; can also be written as grid differences z,—z;.
Thus, the denominators do not depend on ¥.

Do[f]( ) is a polynomial of degree n—1 in x and can be recognized as an
n-point Lagrange interpolation of f(x) (Abramowitz & Stegun 1965: eqn 25.2.2).
If a general function f(x) is replaced by Dy[f](x) then the grid-point values f(z;)
and operators D,[f](x) are unchanged. That restriction to polynomials of degree
n—1 permits D, , to be replaced by D, in the derivative matching equation (3.4).
The freedom to vary x implies that Dy[f](x) is the dth derivative with respect to
x of Do[f](x). Fornberg (1988) made that linkage the premise for an algorithm,
rather than a consequence.

4. Derivation of error terms
At degree n and beyond, errors will arise. It is useful to be able to calculate the

higher-order errors, for example, to extend high-order numerical schemes to non-
uniform grids (Smith 2000). The general difference operator can be written

D,lf] = Zn:wif(wi) = Zn: (“’iM % - )

1
=1 =1 =

[, el ¥f ) ¥f
_;< Ejl ozl |, > ]Z:% J a2l |,
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where

n

E(j) = Z wiozz. (4.2)

=1

The derivation in §3 for the approximate derivatives ensures that with 0<j<n

E(j) = 18, (4.3)
For j>n, the expression of equation (3.8) for the weights w; has the consequence
1 1 U | 0o
[24] 0y ves [£2% 61(1
o? o ol 2094
—det
ot ™t L at Tt (n— D)!0(,—1ya
' o 0[; .o, 0
B(j) = S @)
1 1 o1
o oS Qp,
det| af o o,
ottt

The denominator is VDM(«). From equation (3.5) and by expansion down the
last column, the numerator is

d(—=1)""""det(al"), 1<s, t<n, (4.5)

where I'=(0, 1, 2, ..., n—1, j)\(d) (similar to y but including j at position n).
Then

d/(=1)"""""det(e;*)
VDM («)

E(j) = = dI(=1)"""" Sy (@), (4.6)

where the partition is
A@G;d,n) = (Gyn—1,...,00\(d) = (n—1,...,0) = (j —n+1,1"""").  (47)
The conjugate partition A'(j; d,n) = (n— d,1°") is of length j—n+1. Inserting

the above expression into equation (4.1) gives the explicit form for the general
difference operator in terms of Schur functions as
). (4.8)
z=x

D,lf] = di(—1)"~" 12 (SA(Jdn ajf

Erd
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With the initial Syj.4,) for 0<j<n defined as

(_1)7z—d—17 ]= d,
SA(j;d,n) = { (49)

0, j#d.
equation (4.8) can also be written as
). (4.10)
=X

adf n—d—1 - SA(jédﬂ)(a) ajf
Dl =Ga| =0T N T
j=n ””

=X

5. Preliminary results

Before the recurrence relation of equation (2.9) is derived, some preliminary
results are first obtained. As used earlier, the Jacobi-Trudi identity for the
conjugate partition gives the Schur functions in terms of elementary symmetric
functions

Spgiam(a) =det(es_ope), 1<s, t<j—n+1, (5.1)

where A} denotes element s of the conjugate partition A'(j; d,n) = (n— d,17").
The square matrix of size j—n—+1, which gives the subscripts for the elementary
symmetric functions in equation (5.1), is

n—d n—d+1 ... j—d
, 0 1 eee J—m ‘
Ay —s+ =] ] ] . , 1<s, t<j—n+1.
l—j+n .. 0 1

(5.2)

By the definition of equation (2.1), ;=0 when i>n so the highest subscript
that yields a non-zero elementary symmetric function is given when the subscript
i=n. The first element n—d of the conjugate partition gives the subscripts
n—d—s+t on the first row. So, with s=1, the last non-zero elementary
symmetric function e, arises when n—d—1+t=n, that is, t=d-+1. Since j—n+

1>t, then the first row consists of the elements e, 4, ..., e, padded with zeros for
j=n+d; otherwise it consists of the elements e,_g4, ..., ¢,—4 Accordingly, the
Schur function S, () is considered over two intervals:
€n—d ej_d cic
det M(];"J[l) , n<j<n+d,
_ j—n+
Sit00(@) = [ R ) 53)
det . j=n+d.
(j—n+1) )
Mj—n+1

For convenience, the notation Mi(x) refers to the upper-triangular matrix M; (of

size ) with row z removed and the notation M;” (y) refers to M; with row z and
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column y removed. The second row of equation (5.2), and hence the first row of

M;_, 41, has final element e, when j—n=mn, so that j=2n, giving

1 e ... e,
0 " T .
Mi_ppy=1. . . , Jj=2n. (5.4a)
|
0 ... 0 1

The values of this matrix are a direct consequence of (5.2). The matrix is upper-
triangular since for s>t+1 in equation (5.2), that is, in the strictly lower
triangular region of (5.4a), then the conjugate partition has elements 1+ s—t<0
and e;=0 for ¢ <0. For other values of j> n, equation (5.2) shows that the
matrices M;_,+, may be defined iteratively in terms of the above equation
(5.4a). The last rows of equation (5.4a) and in the second case below, equation
(5.4b), are chosen for compatibility in this iterative definition and as a result they
preserve the upper-triangular nature of M;_,, ;.

'{]\JJ_HH}W, 1<k I<j—n+1<n+1,
0
0
M4 = . (5.40)
jwj_n e, |, J>2n.
€1
L \O0 ... 0 1

In the first case, the final column goes up from 1 to e;_,. In the second case, the
zeros at the start of the final column are a consequence of e;=0 when > n.
With the first row and column removed, it is clear that for i>1

det(MY (1)) = 1. (5.5)

For brevity in the following derivations, this result is also assumed for the case
i=1. From the iterative definition it is clear that

MYy =My, ix=2. (5.6)
Since M; is upper triangular with unit diagonal elements,
det(M;) =1, i>1. (5.7)
For 1<k, {<iand i>2
k k
det(M"(€)) = det(M] . (0): (5.8)

This result is due to the trailing 1s on the leading diagonal of M, The
determinant can be expanded up the leading diagonal until the first of either row
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k or column £ is reached when the trailing 1s end and the expansion of the
determinant stops.

By expansion up the leading diagonal in equations (5.4a,b), when 1<k,
(<j—n and j—n=>2,

det(MY" V() =0, j—n—k+1<¢,
det(M" 7V (0)) = (5.9)

det(M] 0 I ), j—n—k+1>0.

In the first case the matrix can be reduced to size max(j—n—k+1,¢)=/ by
equation (5.8). Since the row removed j—n—k+1 is less than the column
removed /, it can be seen by considering equation (5.4) that the last row is
all zero, giving the zero determinant. In the second case, when the row
removed j—n—k+1 is greater than or equal to the column removed ¢, then
the matrix can be reduced to size max(j—n—Fk+1,{)=j—n—k+1 by
equation (5.8).
Expanding the determinant along the first row in equation (5.3) gives

j—n+1

ST () ey det(MZ VY (0), n<j<n+d,
Saggam(®) = q /' (5.10)

Z(—l)ul en—d+o—1 det(M; MY nﬁl)(f)), j>n+d.

/=1

By expansion of the determinant up the final column in equations (5.4a,b), when
¢<j—mn (i.e. not removing the final column),

j—n
o S (=D det(MZ (1), n<j<2n,
det(M;L,157(0) =+ (5.11)
S (=1 e det(MI T (@), j> 20,
k=1

Strictly speaking, with j=n+1, det(M. - ,LT{U( )) = ¢, so for compatibility with

the first case above it is assumed that det( (1)

6. Construction of the recurrence relation

The results of §5 form the building blocks used in deriving the recurrence
relation. In accordance with the intervals over which these results are valid,
S(j:an) () is considered for (a) low-order error terms n<j<n+d, (b) moderate-
order error terms n+ d<j<2n and (c) high-order error terms j>2n. The initial
values of S(j,4n) () are defined on the interval 0<j<n as in equation (4.9)

(—) =,

(6.1)
0, j#d.

SA(j;d,n)(a) = {
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It is left to show that with these initial values the Schur functions S ;.4 () can

be calculated for all 7> n through the recurrence relation

Sagan () = Z(—l)kﬂ erSA(—kdn) (@) (6.2)
=1
(a) Low-order error terms: n<j<n+d

For the interval n<j<n+d, the first case in equation (5.10) gives

j—n+1

SA(j;d,n)(a) = Z (_1)L/+1 Cn—d+i— ldet(M(j niIL—-’l—l)(e))
(=

a1(5) + a2(j) + a3(9), (6.3)

where the summation is split up as

—_

j—n

1
73(7)

=
(=1

The last case is with £=j—n+1 and equations (5.6) and (5.7) have been used to
simplify the determinant. When j=n, it is clear from the summation in equation
(6.3) that a4(j) +02(j) =0, since these terms do not arise. For the remaining j> n,
the first case of equation (5.11) is used to give

3

j—n

01(j) + 03(j) = <—1>“1en_d+g_1(z< —1)"* ey det(M" ’“*”(f»). (6.5)

1 k=1

(N

~
I

The order of summation is exchanged to give

k=1

j—n j—n
j) +as(i) = (=1 (Z(—l)‘“ eniri— det (M “”(5))). (6.6)

The inner summation of the sum a(n)+03(j) =0 is split such that

.

-n j—n—k+1
01(j) = <—1>’““ek< S (=) ey g det(MI" "W))). (6.7)

1 (=1

e
Il

When j=n+1 then g5(j)=0 as k only takes one value in the outer summation,
hence ¢ takes all the values in the inner summation. For j>n+1 the remaining
part of the split is given by

o)) = _<—1>’““ek( S () ey det(M “n”kit”w))). (6.8)
4

=j—n—k+2
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Using the second case of equation (5.9), since from the inner summation
j—n—k+1>¢,

.

—-n j—n—k+1 o
a,(j) = «ﬂﬁ“%< §j<—n“%wwﬁq®uMﬁw£Pw»> (6.9)

1 /=1

=~
Il

The outer summation implies that n<j—k. Since k>1 and j<n+d, for this
interval, j—k<n+d—1. Together these inequalities imply that n<j—k<n-+d,
so the first case of equation (5.10) may be inserted with j replaced by j—k
to give

j—n

() = S (=1 S (@) (6.10)

k=

—_

Using the first case of equation (5.9), since from the inner summation j—n—k+
1<,

aﬂﬂ=._@%f“q< §j «AVH%MHAdawﬁ””“W@0==
4

k=1 =j—n—k+2
(6.11)
The initial conditions of equation (6.1) are used to rewrite a3(j) as
- k
. j— 1
o3(j) = (—1) nejfd = Z (—1) " ekSA(j—k;d,n)(a)' (6.12)

k=j—n+1

As j=>n for this interval and n>k from the upper limit, j—k>0. Combining this
with the lower limit gives 0<j—k<n. From the initial conditions of equation
(6.1), the only non-zero initial value for S;(j_.4,) arises when j—k=d so that
(—1) +1ekSA(]-_k;d7n)(a) = (—1)""e;_, as required.

Finally, from equation (6.3), the recurrence relation over the interval
n<j<n+dis

—n

Sagram (@ = (=) 1Sy pean + Z (=) €S-t (@)
k=j—n+1

>~ <.
Il
= 3

3

(=) S a(jedom (). (6.13)
=

—_

(b) Moderate-order error terms: n+d<j<2n

The proofs over the remaining intervals are much the same with differing
summation indices. For the interval n+ d<j<2n, the second case in equation
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(5.10) and the first case in equation (5.11) give

d+1 -
SA(j;dm) (Oé) = Z(_l)“_l Cn—d+r—1 det(]wj(in-:l_l) (E))
/=1
d+1 j—n (—nmht1
=> (D) ey_gii (Z(—N“ek det(M7"" W))). (6.14)
=1 k=1

On exchanging the order of summation

.

—n d+1 o
Saam (@) = 3 (1) e, <Z<—1>K“en—d+e—1 det(M" ’“*”W)

1 (=1

>~
Il

= a,(j) + a2(j) + a3(j), (6.15)

where the notation a1(j), o2(j) and a3(j) is reused to again denote a split in the
summation. The first part of the split is

j—n—d d+1 .
a() = Y (=) (Z(—l)“len_w_l det (D"~ <6>>>. (6.16)
k=j

/=1

When j—n— d=j—n, that is, d=0, the split does not arise, hence, a4(j) +a3(j) =0.
The remaining terms for d> 0 are split in the inner summation to give

j—n j—n—k+1 _
EEDY <—1>’f“ek< S (=DM det(va‘k“%))

k=j—n—d+1 =1
(6.17)
and
j—n d+1
o) = > <—1>'“+1ek< (=1 eririm det(Mﬁ;,"‘“”(e))).
k=j—n—d+1 (=j—n—k+2
(6.18)
The last case of equation (5.10) with jreplaced by j—k gives
j—n—d
a1(f) = > (1" e S rin, (6.19)
k=1

since from the outer summation j—k>n+ d. The second case of equation (5.9) is
used on the inner summation since the limits give j—n—k+ 1>/, so that

j—n j—n—k+1
R ji—n—k
EEDY <—>’f“ek( S (=) e det(f\@‘in_k$)<f>>>.
k=j—n—d+1 =1

(6.20)
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Then
Jj—n
GZ(j) = Z (_1)k+1 ek:SA(jfk;d,n)a (621)
k=j—n—d+1

where the first case of equation (5.10) has been used with jreplaced by j— k, since
from the outer summation k<j—mn and k>j—n—d+1so that n<j—k<n+d—1.
The remaining part of the summation for d>1 is

j—n d+1 o
EED <—1>’<“ek< S (=) ey i det(MY "””(m):o,
k=j—n—d+1 (=j—n—k+2

(6.22)

by the first case in equation (5.9) as, from the inner summation, £> j—n—k+2 so
that j—n—k+1</{. When j<2n the initial conditions of equation (6.1) give

n
<_1)k+1 ekS/l(j—k';d,n)(a) =0. (623)
k=j—n+1

This result is elementary, since j>mn+d for this interval and from the outer
summation n>k giving j— k> d, similarly n> j—k, and so S(j_j.qn = 0. Then,

j—n—d J

Sagam (@)=Y (=1 e Sai—pam (@) + (= 1) e1.Sa— hean)-
k=1 k=j—n—d+1

|
3

(6.24)

With equation (6.23) used as required to extend the upper limit of the summation,
the recurrence relation for n+d<j<2nis

n

Satiam (@) =Y (1) euSagpian (@)- (6.25)
=1

(¢) High-order error terms: j> 2n

For the interval j>2n, the second cases in equations (5.10) and (5.11) give

d+1 -
St (@) =3 (1) ey yppmy det(MZTV(0)
=1
d+1 ; n (imn—k+1)
=Y (=)™ er g (Z(—l)"’“ e det(M;)" <€>>>. (6.26)
/=1 k=1
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Exchanging the order of summation and splitting the summations into three
parts with further reuse of the ¢,(j), o2(j) and o3(j) notation,

n d+1 -
Sugam(@) = S (=1, (Z(—nmen_dﬁ_l det (MY, ’““)(e»)

k=1 (=1

= 01(j) + a2(j) + a3()). (6.27)

The first part of the split summation is

j—n—d d+1 ‘ o
o)=Y (-1)fe (Z(—l)“l eparimt det(MY MY <4>>>

k=1 /=1
j—n—d
= Z (_l)k-H ekSA(j—k;d,n)(a)a (628)
k=1

where the second case of equation (5.9) has been used since from the summation
limits j—n—k+ 1> d+ 1> ¢ and the second case of equation (5.10) has been
used since from the outer summation j—k>n+d. For j>2n+d, a5(j) +03(j) =0
since 05(j) and o3(j) do not arise in this case. For j<2n+d

n j—n—k+1 o
ol = > (—1)’”@( S ) e det(zvg?u’kitl)(f))),

k=j—n—d+1 =1
(6.29)

where the second case of equation (5.9) has been used since from the inner
summation j—n—k+ 12> £. Then

n

o) = Y. (D" eSug—pan (@), (6.30)

k=j—n—d+1

where the first case of equation (5.10) has been used since in this interval j>2n,
from the upper limit n>k so that n<j—k and, from the lower limit,
j—k<n+d—1, which combined give n<j—k<n-+ d— 1. The last split of
the summation is

ZEEDY <—1>k+lek< S (=) e det(Mﬁ‘”‘“”w)))
4

k=j—n—d+1 =j—n—k+2
=0, (6.31)
where the first case of equation (5.9) has been used since from the inner

summation j— n— k+ 1 </{. Finally, the recurrence relation for j>2n is

n

SA(j;d,n)(“) =0,(j) +02(j) = Z(_l)k+1ekSA(j—k;d,n)(a)v (6.32)
k=1

completing the proof of the recurrence relation of equation (6.2) with initial
conditions of equation (6.1).
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7. Concluding remarks

Explicit one-dimensional difference operators D, have been derived that mimic
derivative operators 9? / dz¢ at a reference point y for any number n of distinct
points z, ..., z, over an irregular grid and for any derivative d<<n. Along with these,
arecurrence relation has been derived that allows calculation of Taylor series for the
errors. The n+ jth derivative error terms are polynomials of order j+1 in the
elementary symmetric functions for the displacements z; —x, ..., z,—X.

The Taylor series for the errors makes it elementary to obtain the error from a
linear sum of D, terms, for example, when selecting coefficients in a finite-
difference scheme to mimic a differential equation. At all accuracy levels, the
error coefficients involve polynomials in the n non-constant elementary
symmetric functions ey,...,e, for the set of displacements. The difference
operators Dy together with the elementary symmetric functions, are a natural
combination of tools with which to extend high-order numerical schemes from
uniform to non-uniform grids.

M.K.B. would like to thank the Natural Environment Research Council for Ph.D. funding.

Appendix A. Finite difference formulae for derivatives

Formulae are listed for n-point finite-difference operators D, that mimic the dth
derivative at position y, expressed in terms of the displacements «;=x;,—x. In the
denominators, displacement differences a;—a; can also be written as grid
differences z,— z;.

n=1.
Dolf] = f(z). (A1)
n=2.
Dylf] = - sz_(xji - z;f_(xjé)l , (A 20)
o =L S (A2b)
n=3
ayasf(z) gz f (1) o f (23)
Dolr} = (ap — ap) () — ag) " (0 — ) (g — a3) " (a3 — ) (a3 — )’ (& 30)
(o tag)f(m)  (tag)f(m) (o +ay)f(m)
Dilfl = (g —ag)(ay —ag) (g —ap)(ay—ag) (ag—ap)(ag—ay)’ (A3D)
Dy[f] = 2f(z) n 2 (22) n 2f(z3) (A3c)

(g —ag)(ap —ag) (g —ay)(ay—ag)  (ag—ay)(az—ag)
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n=4
Dylf] = — agozay f(z) _ arazoyf(z,)

(a; —ag) (g —ag)(ar —ay) (o —ay) (a0 —az) (o —ay)

. a0 f(73) _ araosf(zy)
(ag—ay)(ag—ay)(ag —ay) (g —ay) (g —ag)(ay —ag)’

(
(oo + gy +agoy)f(x) i (oo + ayay +agoy)f(m)

(ar —ag)(eg —ag)(ay —ay) (o —ay) (e —az)(ay —ay)

(yag +agoy + ayay) f(x3) (g +ajos + agag) f(2y)

(a3 —ay)(as —az) (g —ay) (g —a)(oy — o) (g — )’

_ 2w tazta)f(m) 0 2(ataztay)f(z)
Deli} = (a1 —ag)(eg —ag)(ay —ay) (o —ay) (e —az)(ay —ay)
2 toagtag)f(s) 2 Fagtag)f(n)
(ag—ay)(ag—a) (g —ay) (o —ap) (g —ag)(ay —ag)’
6f(7) 6f(1,)
P = G =)@ — )@ —a) T (=) —a) (e —a)
6f(13) 6f(1)
" (g — ay) (g — ag) (g — ay) " (g =) (g — o) (g — a3)
n=>=.

a0z f(my)
(a1 —ag) (e — az) (ay — ay) (e — )

Dylf] =

0‘1043054015f($2)

- (g =) (g — az) (g — ay) (et — at5)

a1a2a4a5f(a;3)

" (a3 —ay) (a3 — ag) (a3 — oy ) (@03 — )

0‘10420430‘5f($4)

e = ) (s — atg) (s — ) (s — )

ajapasay f(;)
(a5 — ) (a5 — ag) (5 — ag) (05 — )’

+
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(0420‘3044 + apogas + o + 0‘3044015)f 5171)

(ap — ) — ag)(ay — )y — a5

Di[f] =

(0{10{30[4 + 10305 + o100 + 0(30l4ar)f I«z)

(o —ay) (g — az) (g — ay) (@t — a5

(a3 —ay) (g — ag) (a3 — ay) (g — a5

(s + ayapas + agagas + agagas)f(2y)

(ay — o)y — )y — az)(ay — ay

(e + ey + agagay + agagay)f(as)

(
)
(
)
(a1a2a4 + oo + aqayas + asayas)f(a)
)
(
5)
g , (A 5b)

(a5 — ay)(as — o) (o5 — az) (a5 — ay
2(0(2(:(3 + Oy Oly + o ly + 30y + 3y + 0(40[5)f($1)

(ay —ag)(og — ag)(e — o)y — as)

Dylf] =

2(a1a3 + ooy + ooy + azay + ago + agas)f(x)

(g — ap) (g — az) (g — ay) (g — at3)

2000 + ooy + aqas + agay + agas + oyos)f(ag)

- (ag —ap)(ag — ap)(ag — ay)(ag — as)

2(0[10[2 + o103 + 0 0y + 0o llg + [£5Y843 + (X30[5)f($4)

(ay —ap)(oy — ay)(ey — a3)(ay — as)

2(&10[2 + o103 + 00y + ol + 0oy + C(30(4)f($5)

(a5 — ap) (o — ) (a5 — a3) (a5 — ay)

) (A 50)

6(ay + a3 + oy + a5)f (1)

(ap — o)y — az)(ay — ay)(ay — a)

Dslf] = —

6(ey + a3 + oy + a5)f (1)
(ag —ay)(ey — az)(ar — aug) (g — ats)
6(e; + oy + oy + a5)f(73)

(a3 — o) (g — ap) (g — ) (a3 — ;)

6(a; + oy + oz + ag)f(z)

(g — o)y — )y — az) (g — ;)

_ 6(c; + ay + ag + o) f(a5)
(a5 — ay) (a5 — ag) (a5 — az) (a5 — ay) (A 5d)
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R AT 3 e rr
Ay et o e
RCEC —241;(@) o)ty — o)
8 T e o
8 P o o e (A5¢)

Appendix B. Finite-difference errors

Formulae are listed for the n-point elementary symmetric functions e; in terms of
the displacements a;=z;—x and for the first four error terms in the finite-
difference operators D,[f] that mimic the dth derivative of a function f(z) at a
reference position x.

n=1. Elementary symmetric functions:
€ =0q. (B1)

Error terms (Taylor series):
' e et 3 4
Dolfl = f00) = enf () + 5 £'00 + 5 1P 00 + 50 /Y00 +. (B2)

n=2. Elementary symmetric functions:

€ = + 0o, €y = A 0y. (B 3)
Error terms:
2
e ee e] — ey)e
Dulf] = F0) = =2 (x) — 2 (9 ) = LL= ) gy
2 6 24
(e% —2e)e e (5)
_\H a2 ... B4
130 2700 : (B 4a)
/ er € —e e —2e1e )
Difl =f ) =5 +—"x)+——5—"
2 6 24
4 2 2
61 - 361 62 + 62 (5)
e B 4b
+ 120 00 + (B 4b)
n=3. Elementary symmetric functions:
€ — + (05} + 0[3, €y = 10y + 0[1&3 + a2a3, 63 = 0[10[2“3. (B 5)
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Errors terms:

2
_ % .03 €163 ,(4) (ef —e)ey (5)
DAilf] — =3 == A V)
o] =f00) =5 700+ 700+ ——5— ()
(€] —2eie, + e3)e5 )
B
+ 20 700+, (B 6a)
e ey —e
Dilf) = f'(0) = =200 =0
6 24
2 2
€16 T 6163 T & L5)
120 £ (0
3 2 2
erey —eje3 — 2e1e; + 2663 )
_ — .. B6b
— 1900 = (B
" €1 ,(3) e — e el —2e16+ €3 5
Dlf| =) =7f"00+—5—"00+————f7 (%)
3 12 60
4 2 2
61 _36162 +261 63 + 62 (6)
B
360 S 00+ (B6e)
n=4. Elementary symmetric functions:
€1=a1+a2+a3+a4, (B 7@)
€9 = 010y +(X10[3 +0[10[4 +0[20{3 +012a4 +0{30[4, (B 7b)
€3 = Q1 0pl3 + 0 g0y + o a0+ a0y, (B7¢)
€4 = 0 Qg (ly. (B 7d)
Errors terms:
2
v C oy €l (el e
D, =_4 e A P2/
01— 00 = =557 00 =557 00 =0 0
(€] —2e1e5+ €3) ey (7)
_ —. B8
o (00—, (B 80)
e ees—e ey —eje— exe
Dilfl — () = 53 ¢@® 163~ €4 4(5) 163~ €164~ €263 (5)
WA= 00 =5,/ 00 +—15— "0+ o0 )
3 2 2
cieg—ejeg—2eiee3t et ez
B 8bH
- = 00+, (B 3)
Dol —(x) = — 270 () L2y TG G F e
2 12 60 X 360 X
P —elez—2e3e +ejeg+2
_ G666 6T ey 82€3f(7)(x) — (B8c)

2520

Proc. R. Soc. A (2005)


http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on December 6, 2017

1996 M. K. Bowen and R. Smith
Ds[f]— £ (x) _a @ (x) + et — le(5)(X) +m]c(6)(x)
5 4 20 120
4 2 2
-3 —2 +e5—
+€1 €16~ 46631 6 64f(7)(X)+”‘~ (B 8d)
840
n=>5. Elementary symmetric functions:
e =ay +ay+ag+oy+as, (B 9a)

€y = ({10l + 03 + 00y + (051253 + 0o llg + Oy Oly + [£5Y843 + N30y + (627843 + oy 0y, (B gb)

€3 = 10903 + A1 00y + 0o 0ly + o030y + 030 + a0y + o Olz 0y

+ a3y + oo s + oo s, (B 9¢)
€1 = 109030y + 10030y + a0y 0ly + 0300 + o llz 0Ly Oy, (B gd)
€5 = 0] Ay (3 0Ly ;. (B 9e)

Error terms:

2
. _ % .0 €165 ,(6) (ei —ey)es (7)
Dolfl=1(0) =155/ 00 + 55 7 00 + 50— (0
(€] —2e1e5+e3) e (8)
Bl
es (5 erey—e e, —ees— eye
Difl =1 (0= =555/ 0 =g 0 =P
3 2
erey—ejes—2e 66+ eres +ezey )
— — B10b
ot 1900 =, (B10b)
2
5 - ; - - +e
Dalfl — () = . ¢05) €163~ €4 4(6) €163~ €164 €263 T €5 (7
=00 =55 0 + 55—/ 00 + 5530 ()
3 2 2
eiez—ejeg—2eee3teest e te3 )
+ 50160 700+, (Bl0g)
D R R LT B el MCTO G e LAV
s 20 120 840
3 2 2
ciep—ejeg—2e e+ eet2ee3— 65 3
— — e B10d
2 fY00=, (B0
€1 (5 &—e el —2ee+e
Dif]= V00 =P 00+ 0 + =70
ef —3efey +2e1e54 63— ey ®)
o)+ (B10e)

1680
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