This repository has been archived by the owner on Jun 20, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPdV_kernel.f90
145 lines (110 loc) · 6.05 KB
/
PdV_kernel.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
!Crown Copyright 2012 AWE.
!
! This file is part of CloverLeaf.
!
! CloverLeaf is free software: you can redistribute it and/or modify it under
! the terms of the GNU General Public License as published by the
! Free Software Foundation, either version 3 of the License, or (at your option)
! any later version.
!
! CloverLeaf is distributed in the hope that it will be useful, but
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
! FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
! details.
!
! You should have received a copy of the GNU General Public License along with
! CloverLeaf. If not, see http://www.gnu.org/licenses/.
!> @brief Fortran PdV kernel.
!> @author Wayne Gaudin
!> @details Calculates the change in energy and density in a cell using the
!> change on cell volume due to the velocity gradients in a cell. The time
!> level of the velocity data depends on whether it is invoked as the
!> predictor or corrector.
MODULE PdV_kernel_module
CONTAINS
SUBROUTINE PdV_kernel(predict, &
x_min,x_max,y_min,y_max,dt, &
xarea,yarea,volume, &
density0, &
density1, &
energy0, &
energy1, &
pressure, &
viscosity, &
xvel0, &
xvel1, &
yvel0, &
yvel1, &
volume_change )
IMPLICIT NONE
LOGICAL :: predict
INTEGER :: x_min,x_max,y_min,y_max
REAL(KIND=8) :: dt
REAL(KIND=8), DIMENSION(x_min-2:x_max+3,y_min-2:y_max+2) :: xarea
REAL(KIND=8), DIMENSION(x_min-2:x_max+2,y_min-2:y_max+3) :: yarea
REAL(KIND=8), DIMENSION(x_min-2:x_max+2,y_min-2:y_max+2) :: volume
REAL(KIND=8), DIMENSION(x_min-2:x_max+2,y_min-2:y_max+2) :: density0,energy0
REAL(KIND=8), DIMENSION(x_min-2:x_max+2,y_min-2:y_max+2) :: pressure
REAL(KIND=8), DIMENSION(x_min-2:x_max+2,y_min-2:y_max+2) :: density1,energy1
REAL(KIND=8), DIMENSION(x_min-2:x_max+2,y_min-2:y_max+2) :: viscosity
REAL(KIND=8), DIMENSION(x_min-2:x_max+3,y_min-2:y_max+3) :: xvel0,yvel0
REAL(KIND=8), DIMENSION(x_min-2:x_max+3,y_min-2:y_max+3) :: xvel1,yvel1
REAL(KIND=8), DIMENSION(x_min-2:x_max+3,y_min-2:y_max+3) :: volume_change
INTEGER :: j,k
REAL(KIND=8) :: recip_volume,energy_change,min_cell_volume
REAL(KIND=8) :: right_flux,left_flux,top_flux,bottom_flux,total_flux
!$omp PARALLEL
IF(predict)THEN
!$OMP DO PRIVATE(right_flux,left_flux,top_flux,bottom_flux,total_flux,min_cell_volume, &
!$OMP energy_change,recip_volume)
DO k=y_min,y_max
DO j=x_min,x_max
left_flux= (xarea(j ,k )*(xvel0(j ,k )+xvel0(j ,k+1) &
+xvel0(j ,k )+xvel0(j ,k+1)))*0.25_8*dt*0.5
right_flux= (xarea(j+1,k )*(xvel0(j+1,k )+xvel0(j+1,k+1) &
+xvel0(j+1,k )+xvel0(j+1,k+1)))*0.25_8*dt*0.5
bottom_flux=(yarea(j ,k )*(yvel0(j ,k )+yvel0(j+1,k ) &
+yvel0(j ,k )+yvel0(j+1,k )))*0.25_8*dt*0.5
top_flux= (yarea(j ,k+1)*(yvel0(j ,k+1)+yvel0(j+1,k+1) &
+yvel0(j ,k+1)+yvel0(j+1,k+1)))*0.25_8*dt*0.5
total_flux=right_flux-left_flux+top_flux-bottom_flux
volume_change(j,k)=volume(j,k)/(volume(j,k)+total_flux)
min_cell_volume=MIN(volume(j,k)+right_flux-left_flux+top_flux-bottom_flux &
,volume(j,k)+right_flux-left_flux &
,volume(j,k)+top_flux-bottom_flux)
recip_volume=1.0/volume(j,k)
energy_change=(pressure(j,k)/density0(j,k)+viscosity(j,k)/density0(j,k))*total_flux*recip_volume
energy1(j,k)=energy0(j,k)-energy_change
density1(j,k)=density0(j,k)*volume_change(j,k)
ENDDO
ENDDO
!$OMP END DO
ELSE
!$OMP DO PRIVATE(right_flux,left_flux,top_flux,bottom_flux,total_flux,min_cell_volume, &
!$OMP energy_change,recip_volume)
DO k=y_min,y_max
DO j=x_min,x_max
left_flux= (xarea(j ,k )*(xvel0(j ,k )+xvel0(j ,k+1) &
+xvel1(j ,k )+xvel1(j ,k+1)))*0.25_8*dt
right_flux= (xarea(j+1,k )*(xvel0(j+1,k )+xvel0(j+1,k+1) &
+xvel1(j+1,k )+xvel1(j+1,k+1)))*0.25_8*dt
bottom_flux=(yarea(j ,k )*(yvel0(j ,k )+yvel0(j+1,k ) &
+yvel1(j ,k )+yvel1(j+1,k )))*0.25_8*dt
top_flux= (yarea(j ,k+1)*(yvel0(j ,k+1)+yvel0(j+1,k+1) &
+yvel1(j ,k+1)+yvel1(j+1,k+1)))*0.25_8*dt
total_flux=right_flux-left_flux+top_flux-bottom_flux
volume_change(j,k)=volume(j,k)/(volume(j,k)+total_flux)
min_cell_volume=MIN(volume(j,k)+right_flux-left_flux+top_flux-bottom_flux &
,volume(j,k)+right_flux-left_flux &
,volume(j,k)+top_flux-bottom_flux)
recip_volume=1.0/volume(j,k)
energy_change=(pressure(j,k)/density0(j,k)+viscosity(j,k)/density0(j,k))*total_flux*recip_volume
energy1(j,k)=energy0(j,k)-energy_change
density1(j,k)=density0(j,k)*volume_change(j,k)
ENDDO
ENDDO
!$OMP END DO
ENDIF
!$omp END PARALLEL
END SUBROUTINE PdV_kernel
END MODULE PdV_kernel_module