-
Notifications
You must be signed in to change notification settings - Fork 340
/
Copy pathyolov8_pruning.py
397 lines (326 loc) · 14.9 KB
/
yolov8_pruning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# This code is adapted from Issue [#147](https://github.com/VainF/Torch-Pruning/issues/147), implemented by @Hyunseok-Kim0.
import argparse
import math
import os
from copy import deepcopy
from datetime import datetime
from pathlib import Path
from typing import List, Union
import numpy as np
import torch
import torch.nn as nn
from matplotlib import pyplot as plt
from ultralytics import YOLO, __version__
from ultralytics.nn.modules import Detect, C2f, Conv, Bottleneck
from ultralytics.nn.tasks import attempt_load_one_weight
from ultralytics.yolo.engine.model import TASK_MAP
from ultralytics.yolo.engine.trainer import BaseTrainer
from ultralytics.yolo.utils import yaml_load, LOGGER, RANK, DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS
from ultralytics.yolo.utils.checks import check_yaml
from ultralytics.yolo.utils.torch_utils import initialize_weights, de_parallel
import torch_pruning as tp
def save_pruning_performance_graph(x, y1, y2, y3):
"""
Draw performance change graph
Parameters
----------
x : List
Parameter numbers of all pruning steps
y1 : List
mAPs after fine-tuning of all pruning steps
y2 : List
MACs of all pruning steps
y3 : List
mAPs after pruning (not fine-tuned) of all pruning steps
Returns
-------
"""
try:
plt.style.use("ggplot")
except:
pass
x, y1, y2, y3 = np.array(x), np.array(y1), np.array(y2), np.array(y3)
y2_ratio = y2 / y2[0]
# create the figure and the axis object
fig, ax = plt.subplots(figsize=(8, 6))
# plot the pruned mAP and recovered mAP
ax.set_xlabel('Pruning Ratio')
ax.set_ylabel('mAP')
ax.plot(x, y1, label='recovered mAP')
ax.scatter(x, y1)
ax.plot(x, y3, color='tab:gray', label='pruned mAP')
ax.scatter(x, y3, color='tab:gray')
# create a second axis that shares the same x-axis
ax2 = ax.twinx()
# plot the second set of data
ax2.set_ylabel('MACs')
ax2.plot(x, y2_ratio, color='tab:orange', label='MACs')
ax2.scatter(x, y2_ratio, color='tab:orange')
# add a legend
lines, labels = ax.get_legend_handles_labels()
lines2, labels2 = ax2.get_legend_handles_labels()
ax2.legend(lines + lines2, labels + labels2, loc='best')
ax.set_xlim(105, -5)
ax.set_ylim(0, max(y1) + 0.05)
ax2.set_ylim(0.05, 1.05)
# calculate the highest and lowest points for each set of data
max_y1_idx = np.argmax(y1)
min_y1_idx = np.argmin(y1)
max_y2_idx = np.argmax(y2)
min_y2_idx = np.argmin(y2)
max_y1 = y1[max_y1_idx]
min_y1 = y1[min_y1_idx]
max_y2 = y2_ratio[max_y2_idx]
min_y2 = y2_ratio[min_y2_idx]
# add text for the highest and lowest values near the points
ax.text(x[max_y1_idx], max_y1 - 0.05, f'max mAP = {max_y1:.2f}', fontsize=10)
ax.text(x[min_y1_idx], min_y1 + 0.02, f'min mAP = {min_y1:.2f}', fontsize=10)
ax2.text(x[max_y2_idx], max_y2 - 0.05, f'max MACs = {max_y2 * y2[0] / 1e9:.2f}G', fontsize=10)
ax2.text(x[min_y2_idx], min_y2 + 0.02, f'min MACs = {min_y2 * y2[0] / 1e9:.2f}G', fontsize=10)
plt.title('Comparison of mAP and MACs with Pruning Ratio')
plt.savefig('pruning_perf_change.png')
def infer_shortcut(bottleneck):
c1 = bottleneck.cv1.conv.in_channels
c2 = bottleneck.cv2.conv.out_channels
return c1 == c2 and hasattr(bottleneck, 'add') and bottleneck.add
class C2f_v2(nn.Module):
# CSP Bottleneck with 2 convolutions
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
super().__init__()
self.c = int(c2 * e) # hidden channels
self.cv0 = Conv(c1, self.c, 1, 1)
self.cv1 = Conv(c1, self.c, 1, 1)
self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
def forward(self, x):
# y = list(self.cv1(x).chunk(2, 1))
y = [self.cv0(x), self.cv1(x)]
y.extend(m(y[-1]) for m in self.m)
return self.cv2(torch.cat(y, 1))
def transfer_weights(c2f, c2f_v2):
c2f_v2.cv2 = c2f.cv2
c2f_v2.m = c2f.m
state_dict = c2f.state_dict()
state_dict_v2 = c2f_v2.state_dict()
# Transfer cv1 weights from C2f to cv0 and cv1 in C2f_v2
old_weight = state_dict['cv1.conv.weight']
half_channels = old_weight.shape[0] // 2
state_dict_v2['cv0.conv.weight'] = old_weight[:half_channels]
state_dict_v2['cv1.conv.weight'] = old_weight[half_channels:]
# Transfer cv1 batchnorm weights and buffers from C2f to cv0 and cv1 in C2f_v2
for bn_key in ['weight', 'bias', 'running_mean', 'running_var']:
old_bn = state_dict[f'cv1.bn.{bn_key}']
state_dict_v2[f'cv0.bn.{bn_key}'] = old_bn[:half_channels]
state_dict_v2[f'cv1.bn.{bn_key}'] = old_bn[half_channels:]
# Transfer remaining weights and buffers
for key in state_dict:
if not key.startswith('cv1.'):
state_dict_v2[key] = state_dict[key]
# Transfer all non-method attributes
for attr_name in dir(c2f):
attr_value = getattr(c2f, attr_name)
if not callable(attr_value) and '_' not in attr_name:
setattr(c2f_v2, attr_name, attr_value)
c2f_v2.load_state_dict(state_dict_v2)
def replace_c2f_with_c2f_v2(module):
for name, child_module in module.named_children():
if isinstance(child_module, C2f):
# Replace C2f with C2f_v2 while preserving its parameters
shortcut = infer_shortcut(child_module.m[0])
c2f_v2 = C2f_v2(child_module.cv1.conv.in_channels, child_module.cv2.conv.out_channels,
n=len(child_module.m), shortcut=shortcut,
g=child_module.m[0].cv2.conv.groups,
e=child_module.c / child_module.cv2.conv.out_channels)
transfer_weights(child_module, c2f_v2)
setattr(module, name, c2f_v2)
else:
replace_c2f_with_c2f_v2(child_module)
def save_model_v2(self: BaseTrainer):
"""
Disabled half precision saving. originated from ultralytics/yolo/engine/trainer.py
"""
ckpt = {
'epoch': self.epoch,
'best_fitness': self.best_fitness,
'model': deepcopy(de_parallel(self.model)),
'ema': deepcopy(self.ema.ema),
'updates': self.ema.updates,
'optimizer': self.optimizer.state_dict(),
'train_args': vars(self.args), # save as dict
'date': datetime.now().isoformat(),
'version': __version__}
# Save last, best and delete
torch.save(ckpt, self.last)
if self.best_fitness == self.fitness:
torch.save(ckpt, self.best)
if (self.epoch > 0) and (self.save_period > 0) and (self.epoch % self.save_period == 0):
torch.save(ckpt, self.wdir / f'epoch{self.epoch}.pt')
del ckpt
def final_eval_v2(self: BaseTrainer):
"""
originated from ultralytics/yolo/engine/trainer.py
"""
for f in self.last, self.best:
if f.exists():
strip_optimizer_v2(f) # strip optimizers
if f is self.best:
LOGGER.info(f'\nValidating {f}...')
self.metrics = self.validator(model=f)
self.metrics.pop('fitness', None)
self.run_callbacks('on_fit_epoch_end')
def strip_optimizer_v2(f: Union[str, Path] = 'best.pt', s: str = '') -> None:
"""
Disabled half precision saving. originated from ultralytics/yolo/utils/torch_utils.py
"""
x = torch.load(f, map_location=torch.device('cpu'))
args = {**DEFAULT_CFG_DICT, **x['train_args']} # combine model args with default args, preferring model args
if x.get('ema'):
x['model'] = x['ema'] # replace model with ema
for k in 'optimizer', 'ema', 'updates': # keys
x[k] = None
for p in x['model'].parameters():
p.requires_grad = False
x['train_args'] = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # strip non-default keys
# x['model'].args = x['train_args']
torch.save(x, s or f)
mb = os.path.getsize(s or f) / 1E6 # filesize
LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")
def train_v2(self: YOLO, pruning=False, **kwargs):
"""
Disabled loading new model when pruning flag is set. originated from ultralytics/yolo/engine/model.py
"""
self._check_is_pytorch_model()
if self.session: # Ultralytics HUB session
if any(kwargs):
LOGGER.warning('WARNING ⚠️ using HUB training arguments, ignoring local training arguments.')
kwargs = self.session.train_args
overrides = self.overrides.copy()
overrides.update(kwargs)
if kwargs.get('cfg'):
LOGGER.info(f"cfg file passed. Overriding default params with {kwargs['cfg']}.")
overrides = yaml_load(check_yaml(kwargs['cfg']))
overrides['mode'] = 'train'
if not overrides.get('data'):
raise AttributeError("Dataset required but missing, i.e. pass 'data=coco128.yaml'")
if overrides.get('resume'):
overrides['resume'] = self.ckpt_path
self.task = overrides.get('task') or self.task
self.trainer = TASK_MAP[self.task][1](overrides=overrides, _callbacks=self.callbacks)
if not pruning:
if not overrides.get('resume'): # manually set model only if not resuming
self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml)
self.model = self.trainer.model
else:
# pruning mode
self.trainer.pruning = True
self.trainer.model = self.model
# replace some functions to disable half precision saving
self.trainer.save_model = save_model_v2.__get__(self.trainer)
self.trainer.final_eval = final_eval_v2.__get__(self.trainer)
self.trainer.hub_session = self.session # attach optional HUB session
self.trainer.train()
# Update model and cfg after training
if RANK in (-1, 0):
self.model, _ = attempt_load_one_weight(str(self.trainer.best))
self.overrides = self.model.args
self.metrics = getattr(self.trainer.validator, 'metrics', None)
def prune(args):
# load trained yolov8 model
model = YOLO(args.model)
model.__setattr__("train_v2", train_v2.__get__(model))
pruning_cfg = yaml_load(check_yaml(args.cfg))
batch_size = pruning_cfg['batch']
# use coco128 dataset for 10 epochs fine-tuning each pruning iteration step
# this part is only for sample code, number of epochs should be included in config file
pruning_cfg['data'] = "coco128.yaml"
pruning_cfg['epochs'] = 10
model.model.train()
replace_c2f_with_c2f_v2(model.model)
initialize_weights(model.model) # set BN.eps, momentum, ReLU.inplace
for name, param in model.model.named_parameters():
param.requires_grad = True
example_inputs = torch.randn(1, 3, pruning_cfg["imgsz"], pruning_cfg["imgsz"]).to(model.device)
macs_list, nparams_list, map_list, pruned_map_list = [], [], [], []
base_macs, base_nparams = tp.utils.count_ops_and_params(model.model, example_inputs)
# do validation before pruning model
pruning_cfg['name'] = f"baseline_val"
pruning_cfg['batch'] = 1
validation_model = deepcopy(model)
metric = validation_model.val(**pruning_cfg)
init_map = metric.box.map
macs_list.append(base_macs)
nparams_list.append(100)
map_list.append(init_map)
pruned_map_list.append(init_map)
print(f"Before Pruning: MACs={base_macs / 1e9: .5f} G, #Params={base_nparams / 1e6: .5f} M, mAP={init_map: .5f}")
# prune same ratio of filter based on initial size
pruning_ratio = 1 - math.pow((1 - args.target_prune_rate), 1 / args.iterative_steps)
for i in range(args.iterative_steps):
model.model.train()
for name, param in model.model.named_parameters():
param.requires_grad = True
ignored_layers = []
unwrapped_parameters = []
for m in model.model.modules():
if isinstance(m, (Detect,)):
ignored_layers.append(m)
example_inputs = example_inputs.to(model.device)
pruner = tp.pruner.GroupNormPruner(
model.model,
example_inputs,
importance=tp.importance.GroupNormImportance(), # L2 norm pruning,
iterative_steps=1,
pruning_ratio=pruning_ratio,
ignored_layers=ignored_layers,
unwrapped_parameters=unwrapped_parameters
)
# Test regularization
#output = model.model(example_inputs)
#(output[0].sum() + sum([o.sum() for o in output[1]])).backward()
#pruner.regularize(model.model)
pruner.step()
# pre fine-tuning validation
pruning_cfg['name'] = f"step_{i}_pre_val"
pruning_cfg['batch'] = 1
validation_model.model = deepcopy(model.model)
metric = validation_model.val(**pruning_cfg)
pruned_map = metric.box.map
pruned_macs, pruned_nparams = tp.utils.count_ops_and_params(pruner.model, example_inputs.to(model.device))
current_speed_up = float(macs_list[0]) / pruned_macs
print(f"After pruning iter {i + 1}: MACs={pruned_macs / 1e9} G, #Params={pruned_nparams / 1e6} M, "
f"mAP={pruned_map}, speed up={current_speed_up}")
# fine-tuning
for name, param in model.model.named_parameters():
param.requires_grad = True
pruning_cfg['name'] = f"step_{i}_finetune"
pruning_cfg['batch'] = batch_size # restore batch size
model.train_v2(pruning=True, **pruning_cfg)
# post fine-tuning validation
pruning_cfg['name'] = f"step_{i}_post_val"
pruning_cfg['batch'] = 1
validation_model = YOLO(model.trainer.best)
metric = validation_model.val(**pruning_cfg)
current_map = metric.box.map
print(f"After fine tuning mAP={current_map}")
macs_list.append(pruned_macs)
nparams_list.append(pruned_nparams / base_nparams * 100)
pruned_map_list.append(pruned_map)
map_list.append(current_map)
# remove pruner after single iteration
del pruner
save_pruning_performance_graph(nparams_list, map_list, macs_list, pruned_map_list)
if init_map - current_map > args.max_map_drop:
print("Pruning early stop")
break
model.export(format='onnx')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--model', default='yolov8m.pt', help='Pretrained pruning target model file')
parser.add_argument('--cfg', default='default.yaml',
help='Pruning config file.'
' This file should have same format with ultralytics/yolo/cfg/default.yaml')
parser.add_argument('--iterative-steps', default=16, type=int, help='Total pruning iteration step')
parser.add_argument('--target-prune-rate', default=0.5, type=float, help='Target pruning rate')
parser.add_argument('--max-map-drop', default=0.2, type=float, help='Allowed maximum map drop after fine-tuning')
args = parser.parse_args()
prune(args)