-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathvariantEncoders.py
419 lines (387 loc) · 34.9 KB
/
variantEncoders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import math
from config import Config
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pack_padded_sequence
from torch.nn.utils.rnn import pad_packed_sequence
from layers import Conv1D, Attention, ScaledDotProduct_CandidateAttention, GCN
from torch_scatter import scatter_sum, scatter_softmax # need to be installed by following `https://pytorch-scatter.readthedocs.io/en/latest`
from newsEncoders import NewsEncoder
from userEncoders import UserEncoder
class CNE_Title(NewsEncoder):
def __init__(self, config: Config):
super(CNE_Title, self).__init__(config)
self.max_title_length = config.max_title_length
self.word_embedding_dim = config.word_embedding_dim
self.hidden_dim = config.hidden_dim
self.news_embedding_dim = config.hidden_dim * 2 + config.category_embedding_dim + config.subCategory_embedding_dim
# LSTM encoder
self.title_lstm = nn.LSTM(self.word_embedding_dim, self.hidden_dim, batch_first=True, bidirectional=True)
# self-attention
self.title_self_attention = Attention(self.hidden_dim * 2, config.attention_dim)
def initialize(self):
super().initialize()
for parameter in self.title_lstm.parameters():
if len(parameter.size()) >= 2:
nn.init.orthogonal_(parameter.data)
else:
nn.init.zeros_(parameter.data)
self.title_self_attention.initialize()
def forward(self, title_text, title_mask, title_entity, content_text, content_mask, content_entity, category, subCategory, user_embedding):
batch_size = title_text.size(0)
news_num = title_text.size(1)
batch_news_num = batch_size * news_num
title_mask = title_mask.view([batch_news_num, self.max_title_length]) # [batch_size * news_num, max_title_length]
title_mask[:, 0] = 1 # To avoid empty input of LSTM
title_length = title_mask.sum(dim=1, keepdim=False).long() # [batch_size * news_num]
sorted_title_length, sorted_title_indices = torch.sort(title_length, descending=True) # [batch_size * news_num]
_, desorted_title_indices = torch.sort(sorted_title_indices, descending=False) # [batch_size * news_num]
# 1. word embedding
title = self.dropout(self.word_embedding(title_text)).view([batch_news_num, self.max_title_length, self.word_embedding_dim]) # [batch_size * news_num, max_title_length, word_embedding_dim]
sorted_title = pack_padded_sequence(title.index_select(0, sorted_title_indices), sorted_title_length.cpu(), batch_first=True) # [batch_size * news_num, max_title_length, word_embedding_dim]
# 2. LSTM encoding
sorted_title_h, (sorted_title_h_n, sorted_title_c_n) = self.title_lstm(sorted_title)
sorted_title_h, _ = pad_packed_sequence(sorted_title_h, batch_first=True, total_length=self.max_title_length) # [batch_size * news_num, max_title_length, hidden_dim * 2]
title_h = sorted_title_h.index_select(0, desorted_title_indices) # [batch_size * news_num, max_title_length, hidden_dim * 2]
# 3. self-attention
title_self = self.title_self_attention(title_h, title_mask).view([batch_size, news_num, self.hidden_dim * 2]) # [batch_size * news_num, hidden_dim * 2]
# 4. feature fusion
news_representation = self.feature_fusion(title_self, category, subCategory) # [batch_size, news_num, news_embedding_dim]
return news_representation
class CNE_Content(NewsEncoder):
def __init__(self, config: Config):
super(CNE_Content, self).__init__(config)
self.max_content_length = config.max_abstract_length
self.word_embedding_dim = config.word_embedding_dim
self.hidden_dim = config.hidden_dim
self.news_embedding_dim = config.hidden_dim * 2 + config.category_embedding_dim + config.subCategory_embedding_dim
# LSTM encoder
self.content_lstm = nn.LSTM(self.word_embedding_dim, self.hidden_dim, batch_first=True, bidirectional=True)
# self-attention
self.content_self_attention = Attention(self.hidden_dim * 2, config.attention_dim)
def initialize(self):
super().initialize()
for parameter in self.content_lstm.parameters():
if len(parameter.size()) >= 2:
nn.init.orthogonal_(parameter.data)
else:
nn.init.zeros_(parameter.data)
self.content_self_attention.initialize()
def forward(self, title_text, title_mask, title_entity, content_text, content_mask, content_entity, category, subCategory, user_embedding):
batch_size = title_text.size(0)
news_num = title_text.size(1)
batch_news_num = batch_size * news_num
content_mask = content_mask.view([batch_news_num, self.max_content_length]) # [batch_size * news_num, max_content_length]
content_mask[:, 0] = 1 # To avoid empty input of LSTM
content_length = content_mask.sum(dim=1, keepdim=False).long() # [batch_size * news_num]
sorted_content_length, sorted_content_indices = torch.sort(content_length, descending=True) # [batch_size * news_num]
_, desorted_content_indices = torch.sort(sorted_content_indices, descending=False) # [batch_size * news_num]
# 1. word embedding
content = self.dropout(self.word_embedding(content_text)).view([batch_news_num, self.max_content_length, self.word_embedding_dim]) # [batch_size * news_num, max_content_length, word_embedding_dim]
sorted_content = pack_padded_sequence(content.index_select(0, sorted_content_indices), sorted_content_length.cpu(), batch_first=True) # [batch_size * news_num, max_content_length, word_embedding_dim]
# 2. LSTM encoding
sorted_content_h, (sorted_content_h_n, sorted_content_c_n) = self.content_lstm(sorted_content)
sorted_content_h, _ = pad_packed_sequence(sorted_content_h, batch_first=True, total_length=self.max_content_length) # [batch_size * news_num, max_content_length, hidden_dim * 2]
content_h = sorted_content_h.index_select(0, desorted_content_indices) # [batch_size * news_num, max_content_length, hidden_dim * 2]
# 3. self-attention
content_self = self.content_self_attention(content_h, content_mask).view([batch_size, news_num, self.hidden_dim * 2]) # [batch_size * news_num, hidden_dim * 2]
# 4. feature fusion
news_representation = self.feature_fusion(content_self, category, subCategory) # [batch_size, news_num, news_embedding_dim]
return news_representation
class NAML_Title(NewsEncoder):
def __init__(self, config: Config):
super(NAML_Title, self).__init__(config)
self.max_title_length = config.max_title_length
self.cnn_kernel_num = config.cnn_kernel_num
self.news_embedding_dim = config.cnn_kernel_num
self.title_conv = Conv1D(config.cnn_method, config.word_embedding_dim, config.cnn_kernel_num, config.cnn_window_size)
self.title_attention = Attention(config.cnn_kernel_num, config.attention_dim)
self.category_affine = nn.Linear(config.category_embedding_dim, config.cnn_kernel_num, bias=True)
self.subCategory_affine = nn.Linear(config.subCategory_embedding_dim, config.cnn_kernel_num, bias=True)
self.affine1 = nn.Linear(config.cnn_kernel_num, config.attention_dim, bias=True)
self.affine2 = nn.Linear(config.attention_dim, 1, bias=False)
def initialize(self):
super().initialize()
self.title_attention.initialize()
nn.init.xavier_uniform_(self.category_affine.weight)
nn.init.zeros_(self.category_affine.bias)
nn.init.xavier_uniform_(self.subCategory_affine.weight)
nn.init.zeros_(self.subCategory_affine.bias)
nn.init.xavier_uniform_(self.affine1.weight)
nn.init.zeros_(self.affine1.bias)
nn.init.xavier_uniform_(self.affine2.weight)
def forward(self, title_text, title_mask, title_entity, content_text, content_mask, content_entity, category, subCategory, user_embedding):
batch_size = title_text.size(0)
news_num = title_text.size(1)
batch_news_num = batch_size * news_num
# 1. word embedding
title_w = self.dropout(self.word_embedding(title_text)).view([batch_news_num, self.max_title_length, self.word_embedding_dim]) # [batch_size * news_num, word_embedding_dim, max_title_length]
# 2. CNN encoding
title_c = self.dropout_(self.title_conv(title_w.permute(0, 2, 1)).permute(0, 2, 1)) # [batch_size * news_num, max_title_length, cnn_kernel_num]
# 3. attention layer
title_representation = self.title_attention(title_c).view([batch_size, news_num, self.cnn_kernel_num]) # [batch_size, news_num, cnn_kernel_num]
# 4. category and subCategory encoding
category_representation = F.relu(self.category_affine(self.category_embedding(category)), inplace=True) # [batch_size, news_num, cnn_kernel_num]
subCategory_representation = F.relu(self.subCategory_affine(self.subCategory_embedding(subCategory)), inplace=True) # [batch_size, news_num, cnn_kernel_num]
# 5. multi-view attention
feature = torch.stack([title_representation, category_representation, subCategory_representation], dim=2) # [batch_size, news_num, 3, cnn_kernel_num]
alpha = F.softmax(self.affine2(torch.tanh(self.affine1(feature))), dim=2) # [batch_size, news_num, 3, 1]
news_representation = (feature * alpha).sum(dim=2, keepdim=False) # [batch_size, news_num, cnn_kernel_num]
return news_representation
class NAML_Content(NewsEncoder):
def __init__(self, config: Config):
super(NAML_Content, self).__init__(config)
self.max_content_length = config.max_abstract_length
self.cnn_kernel_num = config.cnn_kernel_num
self.news_embedding_dim = config.cnn_kernel_num
self.content_conv = Conv1D(config.cnn_method, config.word_embedding_dim, config.cnn_kernel_num, config.cnn_window_size)
self.content_attention = Attention(config.cnn_kernel_num, config.attention_dim)
self.category_affine = nn.Linear(config.category_embedding_dim, config.cnn_kernel_num, bias=True)
self.subCategory_affine = nn.Linear(config.subCategory_embedding_dim, config.cnn_kernel_num, bias=True)
self.affine1 = nn.Linear(config.cnn_kernel_num, config.attention_dim, bias=True)
self.affine2 = nn.Linear(config.attention_dim, 1, bias=False)
def initialize(self):
super().initialize()
self.content_attention.initialize()
nn.init.xavier_uniform_(self.category_affine.weight)
nn.init.zeros_(self.category_affine.bias)
nn.init.xavier_uniform_(self.subCategory_affine.weight)
nn.init.zeros_(self.subCategory_affine.bias)
nn.init.xavier_uniform_(self.affine1.weight)
nn.init.zeros_(self.affine1.bias)
nn.init.xavier_uniform_(self.affine2.weight)
def forward(self, title_text, title_mask, title_entity, content_text, content_mask, content_entity, category, subCategory, user_embedding):
batch_size = title_text.size(0)
news_num = title_text.size(1)
batch_news_num = batch_size * news_num
# 1. word embedding
content_w = self.dropout(self.word_embedding(content_text)).view([batch_news_num, self.max_content_length, self.word_embedding_dim]) # [batch_size * news_num, max_content_length, word_embedding_dim]
# 2. CNN encoding
content_c = self.dropout_(self.content_conv(content_w.permute(0, 2, 1)).permute(0, 2, 1)) # [batch_size * news_num, max_content_length, cnn_kernel_num]
# 3. attention layer
content_representation = self.content_attention(content_c).view([batch_size, news_num, self.cnn_kernel_num]) # [batch_size, news_num, cnn_kernel_num]
# 4. category and subCategory encoding
category_representation = F.relu(self.category_affine(self.category_embedding(category)), inplace=True) # [batch_size, news_num, cnn_kernel_num]
subCategory_representation = F.relu(self.subCategory_affine(self.subCategory_embedding(subCategory)), inplace=True) # [batch_size, news_num, cnn_kernel_num]
# 5. multi-view attention
feature = torch.stack([content_representation, category_representation, subCategory_representation], dim=2) # [batch_size, news_num, 3, cnn_kernel_num]
alpha = F.softmax(self.affine2(torch.tanh(self.affine1(feature))), dim=2) # [batch_size, news_num, 3, 1]
news_representation = (feature * alpha).sum(dim=2, keepdim=False) # [batch_size, news_num, cnn_kernel_num]
return news_representation
class CNE_wo_CS(NewsEncoder):
def __init__(self, config: Config):
super(CNE_wo_CS, self).__init__(config)
self.max_title_length = config.max_title_length
self.max_content_length = config.max_abstract_length
self.word_embedding_dim = config.word_embedding_dim
self.hidden_dim = config.hidden_dim
self.news_embedding_dim = config.hidden_dim * 4 + config.category_embedding_dim + config.subCategory_embedding_dim
# LSTM encoder
self.title_lstm = nn.LSTM(self.word_embedding_dim, self.hidden_dim, batch_first=True, bidirectional=True)
self.content_lstm = nn.LSTM(self.word_embedding_dim, self.hidden_dim, batch_first=True, bidirectional=True)
# self-attention
self.title_self_attention = Attention(self.hidden_dim * 2, config.attention_dim)
self.content_self_attention = Attention(self.hidden_dim * 2, config.attention_dim)
# cross-attention
self.title_cross_attention = ScaledDotProduct_CandidateAttention(self.hidden_dim * 2, self.hidden_dim * 2, config.attention_dim)
self.content_cross_attention = ScaledDotProduct_CandidateAttention(self.hidden_dim * 2, self.hidden_dim * 2, config.attention_dim)
def initialize(self):
super().initialize()
for parameter in self.title_lstm.parameters():
if len(parameter.size()) >= 2:
nn.init.orthogonal_(parameter.data)
else:
nn.init.zeros_(parameter.data)
for parameter in self.content_lstm.parameters():
if len(parameter.size()) >= 2:
nn.init.orthogonal_(parameter.data)
else:
nn.init.zeros_(parameter.data)
self.title_self_attention.initialize()
self.content_self_attention.initialize()
self.title_cross_attention.initialize()
self.content_cross_attention.initialize()
def forward(self, title_text, title_mask, title_entity, content_text, content_mask, content_entity, category, subCategory, user_embedding):
batch_size = title_text.size(0)
news_num = title_text.size(1)
batch_news_num = batch_size * news_num
title_mask = title_mask.view([batch_news_num, self.max_title_length]) # [batch_size * news_num, max_title_length]
content_mask = content_mask.view([batch_news_num, self.max_content_length]) # [batch_size * news_num, max_content_length]
title_mask[:, 0] = 1 # To avoid empty input of LSTM
content_mask[:, 0] = 1 # To avoid empty input of LSTM
title_length = title_mask.sum(dim=1, keepdim=False).long() # [batch_size * news_num]
content_length = content_mask.sum(dim=1, keepdim=False).long() # [batch_size * news_num]
sorted_title_length, sorted_title_indices = torch.sort(title_length, descending=True) # [batch_size * news_num]
_, desorted_title_indices = torch.sort(sorted_title_indices, descending=False) # [batch_size * news_num]
sorted_content_length, sorted_content_indices = torch.sort(content_length, descending=True) # [batch_size * news_num]
_, desorted_content_indices = torch.sort(sorted_content_indices, descending=False) # [batch_size * news_num]
# 1. word embedding
title = self.dropout(self.word_embedding(title_text)).view([batch_news_num, self.max_title_length, self.word_embedding_dim]) # [batch_size * news_num, max_title_length, word_embedding_dim]
content = self.dropout(self.word_embedding(content_text)).view([batch_news_num, self.max_content_length, self.word_embedding_dim]) # [batch_size * news_num, max_content_length, word_embedding_dim]
sorted_title = pack_padded_sequence(title.index_select(0, sorted_title_indices), sorted_title_length.cpu(), batch_first=True) # [batch_size * news_num, max_title_length, word_embedding_dim]
sorted_content = pack_padded_sequence(content.index_select(0, sorted_content_indices), sorted_content_length.cpu(), batch_first=True) # [batch_size * news_num, max_content_length, word_embedding_dim]
# 2. LSTM encoding
sorted_title_h, (sorted_title_h_n, sorted_title_c_n) = self.title_lstm(sorted_title)
sorted_content_h, (sorted_content_h_n, sorted_content_c_n) = self.content_lstm(sorted_content)
sorted_title_h, _ = pad_packed_sequence(sorted_title_h, batch_first=True, total_length=self.max_title_length) # [batch_size * news_num, max_title_length, hidden_dim * 2]
sorted_content_h, _ = pad_packed_sequence(sorted_content_h, batch_first=True, total_length=self.max_content_length) # [batch_size * news_num, max_content_length, hidden_dim * 2]
title_h = sorted_title_h.index_select(0, desorted_title_indices) # [batch_size * news_num, max_title_length, hidden_dim * 2]
content_h = sorted_content_h.index_select(0, desorted_content_indices) # [batch_size * news_num, max_content_length, hidden_dim * 2]
# 3. self-attention
title_self = self.title_self_attention(title_h, title_mask) # [batch_size * news_num, hidden_dim * 2]
content_self = self.content_self_attention(content_h, content_mask) # [batch_size * news_num, hidden_dim * 2]
# 4. cross-attention
title_cross = self.title_cross_attention(title_h, content_self, title_mask) # [batch_size * news_num, hidden_dim * 2]
content_cross = self.content_cross_attention(content_h, title_self, content_mask) # [batch_size * news_num, hidden_dim * 2]
news_representation = torch.cat([title_self + title_cross, content_self + content_cross], dim=1).view([batch_size, news_num, self.hidden_dim * 4]) # [batch_size * news_num, hidden_dim * 4]
# 5. feature fusion
news_representation = self.feature_fusion(news_representation, category, subCategory) # [batch_size, news_num, news_embedding_dim]
return news_representation
class CNE_wo_CA(NewsEncoder):
def __init__(self, config: Config):
super(CNE_wo_CA, self).__init__(config)
self.max_title_length = config.max_title_length
self.max_content_length = config.max_abstract_length
self.word_embedding_dim = config.word_embedding_dim
self.hidden_dim = config.hidden_dim
self.news_embedding_dim = config.hidden_dim * 4 + config.category_embedding_dim + config.subCategory_embedding_dim
# selective LSTM encoder
self.title_lstm = nn.LSTM(self.word_embedding_dim, self.hidden_dim, batch_first=True, bidirectional=True)
self.content_lstm = nn.LSTM(self.word_embedding_dim, self.hidden_dim, batch_first=True, bidirectional=True)
self.title_H = nn.Linear(self.hidden_dim * 2, self.hidden_dim * 2, bias=False)
self.title_M = nn.Linear(self.hidden_dim * 2, self.hidden_dim * 2, bias=True)
self.content_H = nn.Linear(self.hidden_dim * 2, self.hidden_dim * 2, bias=False)
self.content_M = nn.Linear(self.hidden_dim * 2, self.hidden_dim * 2, bias=True)
# self-attention
self.title_self_attention = Attention(self.hidden_dim * 2, config.attention_dim)
self.content_self_attention = Attention(self.hidden_dim * 2, config.attention_dim)
def initialize(self):
super().initialize()
for parameter in self.title_lstm.parameters():
if len(parameter.size()) >= 2:
nn.init.orthogonal_(parameter.data)
else:
nn.init.zeros_(parameter.data)
for parameter in self.content_lstm.parameters():
if len(parameter.size()) >= 2:
nn.init.orthogonal_(parameter.data)
else:
nn.init.zeros_(parameter.data)
nn.init.xavier_uniform_(self.title_H.weight)
nn.init.xavier_uniform_(self.title_M.weight)
nn.init.zeros_(self.title_M.bias)
nn.init.xavier_uniform_(self.content_H.weight)
nn.init.xavier_uniform_(self.content_M.weight)
nn.init.zeros_(self.content_M.bias)
self.title_self_attention.initialize()
self.content_self_attention.initialize()
def forward(self, title_text, title_mask, title_entity, content_text, content_mask, content_entity, category, subCategory, user_embedding):
batch_size = title_text.size(0)
news_num = title_text.size(1)
batch_news_num = batch_size * news_num
title_mask = title_mask.view([batch_news_num, self.max_title_length]) # [batch_size * news_num, max_title_length]
content_mask = content_mask.view([batch_news_num, self.max_content_length]) # [batch_size * news_num, max_content_length]
title_mask[:, 0] = 1 # To avoid empty input of LSTM
content_mask[:, 0] = 1 # To avoid empty input of LSTM
title_length = title_mask.sum(dim=1, keepdim=False).long() # [batch_size * news_num]
content_length = content_mask.sum(dim=1, keepdim=False).long() # [batch_size * news_num]
sorted_title_length, sorted_title_indices = torch.sort(title_length, descending=True) # [batch_size * news_num]
_, desorted_title_indices = torch.sort(sorted_title_indices, descending=False) # [batch_size * news_num]
sorted_content_length, sorted_content_indices = torch.sort(content_length, descending=True) # [batch_size * news_num]
_, desorted_content_indices = torch.sort(sorted_content_indices, descending=False) # [batch_size * news_num]
# 1. word embedding
title = self.dropout(self.word_embedding(title_text)).view([batch_news_num, self.max_title_length, self.word_embedding_dim]) # [batch_size * news_num, max_title_length, word_embedding_dim]
content = self.dropout(self.word_embedding(content_text)).view([batch_news_num, self.max_content_length, self.word_embedding_dim]) # [batch_size * news_num, max_content_length, word_embedding_dim]
sorted_title = pack_padded_sequence(title.index_select(0, sorted_title_indices), sorted_title_length.cpu(), batch_first=True) # [batch_size * news_num, max_title_length, word_embedding_dim]
sorted_content = pack_padded_sequence(content.index_select(0, sorted_content_indices), sorted_content_length.cpu(), batch_first=True) # [batch_size * news_num, max_content_length, word_embedding_dim]
# 2. selective LSTM encoding
sorted_title_h, (sorted_title_h_n, sorted_title_c_n) = self.title_lstm(sorted_title)
sorted_content_h, (sorted_content_h_n, sorted_content_c_n) = self.content_lstm(sorted_content)
sorted_title_m = torch.cat([sorted_title_c_n[0], sorted_title_c_n[1]], dim=1) # [batch_size * news_num, hidden_dim * 2]
sorted_content_m = torch.cat([sorted_content_c_n[0], sorted_content_c_n[1]], dim=1) # [batch_size * news_num, hidden_dim * 2]
sorted_title_h, _ = pad_packed_sequence(sorted_title_h, batch_first=True, total_length=self.max_title_length) # [batch_size * news_num, max_title_length, hidden_dim * 2]
sorted_content_h, _ = pad_packed_sequence(sorted_content_h, batch_first=True, total_length=self.max_content_length) # [batch_size * news_num, max_content_length, hidden_dim * 2]
sorted_title_gate = torch.sigmoid(self.title_H(sorted_title_h) + self.title_M(sorted_content_m).unsqueeze(dim=1)) # [batch_size * news_num, max_title_length, hidden_dim * 2]
sorted_content_gate = torch.sigmoid(self.content_H(sorted_content_h) + self.content_M(sorted_title_m).unsqueeze(dim=1)) # [batch_size * news_num, max_content_length, hidden_dim * 2]
title_h = (sorted_title_h * sorted_title_gate).index_select(0, desorted_title_indices) # [batch_size * news_num, max_title_length, hidden_dim * 2]
content_h = (sorted_content_h * sorted_content_gate).index_select(0, desorted_content_indices) # [batch_size * news_num, max_content_length, hidden_dim * 2]
# 3. self-attention
title_self = self.title_self_attention(title_h, title_mask) # [batch_size * news_num, hidden_dim * 2]
content_self = self.content_self_attention(content_h, content_mask) # [batch_size * news_num, hidden_dim * 2]
news_representation = torch.cat([title_self, content_self], dim=1).view([batch_size, news_num, self.hidden_dim * 4]) # [batch_size * news_num, hidden_dim * 4]
# 4. feature fusion
news_representation = self.feature_fusion(news_representation, category, subCategory) # [batch_size, news_num, news_embedding_dim]
return news_representation
class SUE_wo_GCN(UserEncoder):
def __init__(self, news_encoder, config):
super(SUE_wo_GCN, self).__init__(news_encoder, config)
self.attention_dim = max(config.attention_dim, self.news_embedding_dim // 4)
self.intraCluster_K = nn.Linear(self.news_embedding_dim, self.attention_dim, bias=True)
self.intraCluster_Q = nn.Linear(self.news_embedding_dim, self.attention_dim, bias=True)
self.clusterFeatureAffine = nn.Linear(self.news_embedding_dim, self.news_embedding_dim, bias=True)
self.interClusterAttention = ScaledDotProduct_CandidateAttention(self.news_embedding_dim, self.news_embedding_dim, self.attention_dim)
self.dropout = nn.Dropout(p=config.dropout_rate, inplace=True)
self.category_num = config.category_num + 1 # extra one category index for padding news
self.max_history_num = config.max_history_num
self.attention_scalar = math.sqrt(float(self.attention_dim))
def initialize(self):
nn.init.xavier_uniform_(self.intraCluster_K.weight)
nn.init.zeros_(self.intraCluster_K.bias)
nn.init.xavier_uniform_(self.intraCluster_Q.weight)
nn.init.zeros_(self.intraCluster_Q.bias)
nn.init.xavier_uniform_(self.clusterFeatureAffine.weight, gain=nn.init.calculate_gain('relu'))
nn.init.zeros_(self.clusterFeatureAffine.bias)
self.interClusterAttention.initialize()
def forward(self, user_title_text, user_title_mask, user_title_entity, user_content_text, user_content_mask, user_content_entity, user_category, user_subCategory, \
user_history_mask, user_history_graph, user_history_category_mask, user_history_category_indices, user_embedding, candidate_news_representation):
batch_size = user_title_text.size(0)
news_num = candidate_news_representation.size(1)
batch_news_num = batch_size * news_num
user_history_category_mask[:, -1] = 1
user_history_category_mask = user_history_category_mask.unsqueeze(dim=1).expand(-1, news_num, -1).contiguous() # [batch_size, news_num, category_num]
user_history_category_indices = user_history_category_indices.unsqueeze(dim=1).expand(-1, news_num, -1) # [batch_size, news_num, max_history_num]
history_embedding = self.news_encoder(user_title_text, user_title_mask, user_title_entity, \
user_content_text, user_content_mask, user_content_entity, \
user_category, user_subCategory, user_embedding) # [batch_size, max_history_num, news_embedding_dim]
history_embedding = history_embedding.unsqueeze(dim=1).expand(-1, news_num, -1, -1) # [batch_size, news_num, max_history_num, news_embedding_dim]
# 1. Intra-cluster attention
K = self.intraCluster_K(history_embedding).view([batch_news_num, self.max_history_num, self.attention_dim]) # [batch_size * news_num, max_history_num, attention_dim]
Q = self.intraCluster_Q(candidate_news_representation).view([batch_news_num, self.attention_dim, 1]) # [batch_size * news_num, attention_dim, 1]
a = torch.bmm(K, Q).view([batch_size, news_num, self.max_history_num]) / self.attention_scalar # [batch_size, news_num, max_history_num]
alpha_intra = scatter_softmax(a, user_history_category_indices, 2).unsqueeze(dim=3) # [batch_size, news_num, max_history_num, 1]
intra_cluster_feature = scatter_sum(alpha_intra * history_embedding, user_history_category_indices, dim=2, dim_size=self.category_num) # [batch_size, news_num, category_num, news_embedding_dim]
# perform non-linear transformation on intra-cluster features
intra_cluster_feature = self.dropout(F.relu(self.clusterFeatureAffine(intra_cluster_feature), inplace=True) + intra_cluster_feature) # [batch_size, news_num, category_num, news_embedding_dim]
# 2. Inter-cluster attention
inter_cluster_feature = self.interClusterAttention(
intra_cluster_feature.view([batch_news_num, self.category_num, self.news_embedding_dim]),
candidate_news_representation.view([batch_news_num, self.news_embedding_dim]),
mask=user_history_category_mask.view([batch_news_num, self.category_num])
).view([batch_size, news_num, self.news_embedding_dim]) # [batch_size, news_num, news_embedding_dim]
return inter_cluster_feature
class SUE_wo_HCA(UserEncoder):
def __init__(self, news_encoder, config):
super(SUE_wo_HCA, self).__init__(news_encoder, config)
self.max_history_num = config.max_history_num
self.proxy_node_embedding = nn.Parameter(torch.zeros([config.category_num, self.news_embedding_dim]))
self.gcn = GCN(in_dim=self.news_embedding_dim, out_dim=self.news_embedding_dim, hidden_dim=self.news_embedding_dim, num_layers=config.gcn_layer_num, dropout=config.dropout_rate / 2, residual=not config.no_gcn_residual, layer_norm=config.gcn_layer_norm)
self.attention = Attention(self.news_embedding_dim, config.attention_dim)
self.dropout_ = nn.Dropout(p=config.dropout_rate, inplace=False)
def initialize(self):
nn.init.zeros_(self.proxy_node_embedding)
self.gcn.initialize()
self.attention.initialize()
def forward(self, user_title_text, user_title_mask, user_title_entity, user_content_text, user_content_mask, user_content_entity, user_category, user_subCategory, \
user_history_mask, user_history_graph, user_history_category_mask, user_history_category_indices, user_embedding, candidate_news_representation):
batch_size = user_title_text.size(0)
news_num = candidate_news_representation.size(1)
history_embedding = self.news_encoder(user_title_text, user_title_mask, user_title_entity, \
user_content_text, user_content_mask, user_content_entity, user_category, user_subCategory, user_embedding) # [batch_size, max_history_num, news_embedding_dim]
# 1. GCN
history_embedding = torch.cat([history_embedding, self.dropout_(self.proxy_node_embedding.unsqueeze(dim=0).expand(batch_size, -1, -1))], dim=1) # [batch_size, max_history_num + category_num, news_embedding_dim]
gcn_feature = self.gcn(history_embedding, user_history_graph) + history_embedding # [batch_size, max_history_num + category_num, news_embedding_dim]
gcn_feature = gcn_feature[:, :self.max_history_num, :] # [batch_size, max_history_num, news_embedding_dim]
# 2. Plain attention
user_representation = self.attention(gcn_feature).unsqueeze(dim=1).repeat(1, news_num, 1) # [batch_size, news_num, news_embedding_dim]
return user_representation